机器学习聚类之K-Means算法C++实现

C++实现K-Means算法

该算法的原理主要是随机选取 K 个数据作为初始数据,之后不断经行迭代更新数据直到最终结果不变为止,数据集用的是python的鸢尾花数据集这里直接给出算法的伪代码:
K-Means算法
这个伪代码就是机器学习西瓜书里的那个伪代码,我也是按照这个伪代码来写的,接下来就直接给上c++代码。

#include<iostream>
#include<vector>
#include<algorithm>
#include<string>
#include<sstream>
#include<fstream>
#include<map>
#include <numeric>
#include <windows.h>
#include <istream>
#include <algorithm>
#include <random> 
#include <chrono> 
#include<windows.h>
using namespace std;
//模板函数,将string类型的字符串转化为数字
template <class Type>
Type stringToNum(const string& str)
{
	istringstream iss(str);
	Type num;
	iss >> num;
	return num;
}

//K-means均值算法
class KMeans
{
public:
	KMeans() {};
	~KMeans() {};
	void GetData(); //获取数据
	void keamsstart(int K); //启动函数
	vector<double> GetAvg(vector<vector<double>> v);
	double GetDistance(const  vector<double> &a, const vector<double> &b); //二范数距离
	bool Compare(vector<vector<double>> Judge_Data, vector<vector<double>> Judge_Data2);
private:
	map<vector<double>, string>::iterator iter;

	map<vector<double>, string> All_data; //保存所有提取出来的数据
	map<vector<double>, string>Rand_data;//保存随机选取的数据

	vector<vector<double>> Judge_Data; //保存计算结果的二维向量
	vector<vector<double>> Judge_Data2;//保存计算结果的二维向量

	map<int, map<vector<double>, string>> Result; //保存分类结果的map
};
//从CSV文件里提取数据
void KMeans::GetData() 
{
	ifstream file;
	string line;
	file.open("iris.csv", ios::in);
	if (file.fail()) {
		cout << "文件打开失败" << endl;
		return;
	}
	while (getline(file, line))
	{
		stringstream ss(line);
		string str;
		vector<string>v;
		vector<double> d;
		//cout << line << endl;
		while (getline(ss, str, ','))
		{
			//cout << str << endl;
			v.push_back(str);
		}
		for (int i = 1; i < 5; i++)
		{
			d.push_back(stringToNum<double>(v[i]));
		}
		All_data[d] = v[5];
	}
}
//获得两个向量之间的二范数
double KMeans::GetDistance(const  vector<double> &a, const vector<double> &b)
{
	double sum = 0;
	for (int i = 0; i < a.size(); i++)
	{
		sum += (a[i] - b[i])*(a[i] - b[i]);
	}
	return sqrt(sum);
}
//计算均值
vector<double> KMeans::GetAvg(vector<vector<double>> v)
{
	vector<double> temp;
	for (int i = 0; i < 4; i++)
	{
		double sum = 0;
		for (int j = 0; j < v.size(); j++)
		{
			sum += v[j][i];
		}
		temp.push_back(sum / v.size());
	}
	return temp;
}
//判断聚类结果是否一致如果是一致的表明迭代结束返回False
bool KMeans::Compare(vector<vector<double>> Judge_Data, vector<vector<double>> Judge_Data2)
{
	for (int i = 0; i < Judge_Data.size(); i++)
	{
		for (int j = 0; j < Judge_Data[i].size(); j++)
		{
			if (Judge_Data[i][j] != Judge_Data2[i][j])
			{
				return true;
				break;
			}
		}
	}
	return false;
}
void KMeans::keamsstart(int K)
{
	vector<int>numbers;
	int flag = 0;
	int flag1 = 0;
	//打乱序列,取随机向量
	for (int i = 0; i < All_data.size(); i++)
	{
		numbers.push_back(i);
	}
	unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
	shuffle(numbers.begin(), numbers.end(), std::default_random_engine(seed));
	sort(numbers.begin(), numbers.begin() + K);
	for (iter=All_data.begin();iter!=All_data.end();iter++)
	{
		if (flag == numbers[flag1]) 
		{
			flag1++;
			Rand_data[iter->first] = iter->second;
			if (flag1 == K) break;
		}
		flag++;
	}
	vector<double> xData;
	for (map<vector<double>, string>::iterator iter2 = Rand_data.begin(); iter2 != Rand_data.end(); iter2++)
	{
		xData = iter2->first;
		Judge_Data.push_back(xData);
	}
	for (; ;) //比较均值向量前后是否相等
	{
		vector<double> dis, Sample;
		//计算样本与各初始向量之间的距离,并进行分组
		for (iter = All_data.begin(); iter != All_data.end(); iter++)
		{
			Sample = iter->first;
			for (int i = 0; i < Judge_Data.size(); i++)
			{
				double distance = GetDistance(Sample, Judge_Data[i]);
				dis.push_back(distance);
			}
			int minPosition = min_element(dis.begin(), dis.end()) - dis.begin();
			Result[minPosition][Sample] = iter->second;
			dis.clear();
		}
		//计算分组后的均值
		for (int i = 0; i < K; i++)
		{
			vector<double> temp;
			vector<vector<double>> t;
			for (iter = Result[i].begin(); iter != Result[i].end(); iter++)
			{
				temp = iter->first;
				t.push_back(temp);
			}
			temp.clear();
			temp = GetAvg(t);
			Judge_Data2.push_back(temp);
		}
		if (!Compare(Judge_Data, Judge_Data2)) break;
		Judge_Data = Judge_Data2; //为下次判断做准备
		Judge_Data2.clear();
		Result.clear();
	}
	//打印我们的数据,查看分类结果
	for (int i = 0; i < K; i++)
	{
		cout << "第" << i << "聚类 : " << endl;
		for (iter = Result[i].begin(); iter != Result[i].end(); iter++)
		{
			vector<double> test = iter->first;
			for (int j = 0; j < test.size(); j++)
			{
				cout << test[j] << " ";
			}
			cout << iter->second << endl;
		}
	}
}
int main()
{
	//计算程序所用时间 结果大概在2ms - 4ms
	double run_time;
	_LARGE_INTEGER time_start;	//开始时间
	_LARGE_INTEGER time_over;	//结束时间
	double dqFreq;		//计时器频率
	LARGE_INTEGER f;	//计时器频率
	QueryPerformanceFrequency(&f);
	dqFreq = (double)f.QuadPart;
	QueryPerformanceCounter(&time_start);	//计时开始

	KMeans k;
	k.GetData();
	k.keamsstart(3);

	QueryPerformanceCounter(&time_over);	//计时结束
	run_time = 1000000 * (time_over.QuadPart - time_start.QuadPart) / dqFreq;
	//乘以1000000把单位由秒化为微秒,精度为1000 000/(cpu主频)微秒
	printf("\nrun_time:%fus\n", run_time);
	return 0;
}

来看一下最终的结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终时间是42ms,这是包含了打印数据的时间,实际时间大约在1ms-2ms,因为数据具有随机性,所以用时也会不同。与python的sklearn库自带的kmans算法相比,快10倍左右。

发布了5 篇原创文章 · 获赞 0 · 访问量 84

猜你喜欢

转载自blog.csdn.net/weixin_43791996/article/details/105585595