from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import os
from PIL import Image
import numpy as np
import glob
label_name = ["airplane", "automobile", "bird",
"cat", "deer", "dog",
"frog", "horse", "ship", "truck"]
label_dict = {
}
for idx, name in enumerate(label_name):
label_dict[name] = idx
def default_loader(path):
return Image.open(path).convert("RGB")
train_transform = transforms.Compose([
transforms.RandomResizedCrop((28, 28)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(90),
transforms.RandomGrayscale(0.2),
transforms.ColorJitter(0.1, 0.1, 0.1, 0.1),
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor()
])
class MyDataset(Dataset):
def __init__(self, im_list,
transform=None,
loader = default_loader):
super(MyDataset, self).__init__()
imgs = []
for im_item in im_list:
im_label_name = im_item.split("\\")[-2]
imgs.append([im_item, label_dict[im_label_name]])
self.imgs = imgs
self.transform = transform
self.loader = loader
def __getitem__(self, index):
im_path, im_label = self.imgs[index]
im_data = self.loader(im_path)
if self.transform is not None:
im_data = self.transform(im_data)
return im_data, im_label
def __len__(self):
return len(self.imgs)
im_train_list = glob.glob("E:/pytorch/006cifar10/cifar-10-batches-py/TRAIN/*/*.png")
im_test_list = glob.glob("E:/pytorch/006cifar10/cifar-10-batches-py/TEST/*/*.png")
train_dataset = MyDataset(im_train_list,
transform=train_transform)
test_dataset = MyDataset(im_test_list,
transform =test_transform)
train_loader = DataLoader(dataset=train_dataset,
batch_size=128,
shuffle=True,
num_workers=4)
test_loader = DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False,
num_workers=4)
print("num_of_train", len(train_dataset))
print("num_of_test", len(test_dataset))
num_of_train 50000
num_of_test 10000