目录
进程间通信技术包括消息传递、同步、共享内存和远程过程调用。IPC是一种标准的Unix通信机制。IPC的方式通常有管道(包括无名管道和有名管道)、消息队列,信号量、共享存储、Socket、Streams等,其中Socket和Streams支持在不同主机上的两个进程IPC
无名管道
特点:
1) 半双工的(即数据只能在一个方向上流动),具有固定的读端和写端;
2) 只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间);
3) 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。
4)数据存储属于队列的性质,数据读完之后就没有了。管道有缓存大小,当写入大于缓存会发生写阻塞,当数据被读取后才能继续写入。
原型:
#include<unistd.h>
int pipe(int fd[2]);// 返回值:若成功返回0,失败返回-1
代码:
#include<stdio.h>
#include<unistd.h>
int main()
{
int fd[2]; // 两个文件描述符
pid_t pid;
char buff[20];
int ret=pipe(fd); // 创建管道
if(ret < 0)
printf("Create Pipe Error!\n");
pid=fork(); // 创建子进程
if( pid < 0)
printf("Fork Error!\n");
if(pid > 0) // 父进程
{
close(fd[0]); // 关闭读端
write(fd[1], "hello world\n", 12);
printf("this is parent process ,and pipe write is finished.\n");
}
if(pid==0)
{
close(fd[1]); // 关闭写端
read(fd[0], buff, 20);
printf("%s", buff);
printf("this is child process ,and pipe read is %s.\n",buff);
}
return 0;
}
有名管道
有名管道(FIFO)是一种文件类型,可以在无关的进程之间交换数据,通过一种特殊设备文件形式存在于文件系统中。
原型:
#include<stdio.h>
int mkfifo(const char *pathname, mode_t_Mode);
mode_t_Mode和open函数的mode一样,见下文。其中O_NONBLOCK是指非阻塞模式。
以只读和只写方式 open 管道,不指定非阻塞模式。特点:
- open() 以只读方式打开 FIFO 时,要阻塞到另一个进程为写而打开此 FIFO;
- open() 以只写方式打开 FIFO 时,要阻塞到另一个进程为读而打开此 FIFO。
- 通信过程中若写进程先退出了,就算命名管道里没有数据,调用 read() 函数从 FIFO 里读数据时不阻塞;若写进程又重新运行,则调用 read() 函数从 FIFO 里读数据时又恢复阻塞。
以只读和只写方式 open 管道,指定非阻塞模式。特点:
- 先以只读方式打开,如果没有进程已经为写而打开一个 FIFO, 只读 open() 成功,并且 open() 不阻塞。
- 先以只写方式打开,如果没有进程已经为读而打开一个 FIFO,只写 open() 将出错返回 -1 。
- read()、write() 读写命名管道中读数据时不阻塞。
以可读可写方式 open 管道,则 open() 函数不会阻塞。特点:
- read() 仍会阻塞,缓冲区满时,write() 也会阻塞;
- 通信过程中,读进程退出后,写进程向命名管道内写数据时,写进程不会退出。
- 通信过程中若写进程先退出了,如果名管道里没有数据,调用 read() 函数从 FIFO 里读数据时会阻塞,与第一种情况不同。
mode_t_Mode参数所能使用的标记:
O_RDONLY 以只读方式打开文件
O_WRONLY 以只写方式打开文件
O_RDWR 以可读写方式打开文件. 上述三种旗标是互斥的, 也就是不可同时使用, 但可与下列的旗标利用OR(|)运算符组合.
O_CREAT 若欲打开的文件不存在则自动建立该文件.
O_EXCL 如果O_CREAT 也被设置, 此指令会去检查文件是否存在. 文件若不存在则建立该文件, 否则将导致打开文件错误. 此外, 若O_CREAT 与O_EXCL 同时设置, 并且欲打开的文件为符号连接, 则会打开文件失败.
O_NOCTTY 如果欲打开的文件为终端机设备时, 则不会将该终端机当成进程控制终端机.
O_TRUNC 若文件存在并且以可写的方式打开时, 此旗标会令文件长度清为0, 而原来存于该文件的资料也会消失.
O_APPEND 当读写文件时会从文件尾开始移动, 也就是所写入的数据会以附加的方式加入到文件后面.
O_NONBLOCK 以不可阻断的方式打开文件, 也就是无论有无数据读取或等待, 都会立即返回进程之中.
O_NDELAY 同O_NONBLOCK.
O_SYNC 以同步的方式打开文件.
O_NOFOLLOW 如果参数pathname 所指的文件为一符号连接, 则会令打开文件失败.
O_DIRECTORY 如果参数pathname 所指的文件并非为一目录, 则会令打开文件失败。注:此为Linux2. 2 以后特有的旗标, 以避免一些系统安全问题.
代码:
server_write.c:从管道写入数据
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <signal.h>
//信号处理函数。
void fun(int sig)
{
printf("sig == %d\n",sig);
}
int main()
{
signal(SIGPIPE,fun);
int fd = open("/tmp/fifo.tmp",O_WRONLY);
assert(fd != -1);//fd==-1则创建失败
char buff[128] = {0};
while(1)
{
printf("input:\n");
fgets(buff,128,stdin);//服务端写入内容
write(fd,buff,strlen(buff));
if(strncmp(buff,"end",3)==0) //当输入end时候,退出程序
{
break;
}
}
close(fd);
exit(0);
}
client_read.c:从管道读取数据
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <fcntl.h>
int main()
{
int fd = open("fifo",O_RDONLY);
assert(fd != -1);
char buff[128] = {0};
int n = 0;
while((n = read(fd,buff,127))>0)//n是读入内容的size,当n==0时候表示无读入内容
{
printf("read:(n = %d)%s\n",n,buff);
memset(buff,0,128);//将buff中的数据清空
}
close(fd);
exit(0);
}
消息队列
消息队列指存放消息的队列。是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。
特点:
-
消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。
-
消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。
-
消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。
原型:
#include <sys/msg.h>
int msgget(key_t key, int flag);// 创建或打开消息队列:成功返回队列ID,失败返回-1
int msgsnd(int msqid, const void *ptr, size_t size, int flag);// 添加消息:成功返回0,失败返回-1
int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);// 读取消息:成功返回消息数据的长度,失败返回-1
int msgctl(int msqid, int cmd, struct msqid_ds *buf);// 控制消息队列:成功返回0,失败返回-1
、
在以下两种情况下,msgget
将创建一个新的消息队列:
- 如果没有与键值key相对应的消息队列,并且flag中包含了
IPC_CREAT
标志位。 - key参数为
IPC_PRIVATE
。
函数msgrcv
在读取消息队列时,type参数有下面几种情况:
type == 0
,返回队列中的第一个消息;type > 0
,返回队列中消息类型为 type 的第一个消息;type < 0
,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。
可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。
代码:
服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。
msg_server.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h>
#define MSG_FILE "/etc/passwd"// 用于创建一个唯一的key
struct msg_form { // 消息结构
long mtype;
char mtext[256];
};
int main()
{
int msqid;
key_t key;
struct msg_form msg;
// 获取key值
if((key = ftok(MSG_FILE,'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 打印key值
printf("Message Queue - Server key is: %d.\n", key);
// 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid());
// 循环读取消息
for(;;)
{
msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息
printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
printf("Server: receive msg.mtype is: %d.\n", msg.mtype);
msg.mtype = 999; // 客户端接收的消息类型
sprintf(msg.mtext, "hello, I'm server %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
}
return 0;
}
msg.client.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/msg.h>
#define MSG_FILE "/etc/passwd"// 用于创建一个唯一的key
struct msg_form { // 消息结构
long mtype;
char mtext[256];
};
int main()
{
int msqid;
key_t key;
struct msg_form msg;
// 获取key值
if ((key = ftok(MSG_FILE, 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 打印key值
printf("Message Queue - Client key is: %d.\n", key);
// 打开消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 打印消息队列ID及进程ID
printf("My msqid is: %d.\n", msqid);
printf("My pid is: %d.\n", getpid());
// 添加消息,类型为888
msg.mtype = 888;
sprintf(msg.mtext, "hello, I'm client %d", getpid());
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
// 读取类型为777的消息
msgrcv(msqid, &msg, 256, 999, 0);
printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
return 0;
}
信号量
信号量:是一个含有整数值的资源,进程通过检测该整数值,来保证其他进程在某个时间不会进行类似的操作。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
特点:
-
信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
-
信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
-
每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
-
支持信号量组。
原型:
#include <sys/sem.h>
int semget(key_t key, int num_sems, int sem_flags);// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
int semop(int semid, struct sembuf semoparray[], size_t numops);// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
int semctl(int semid, int sem_num, int cmd, ...);// 控制信号量的相关信息
当semget
创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems
),通常为1; 如果是引用一个现有的集合,则将num_sems
指定为 0 。
在semop
函数中,sembuf
结构的定义如下:
struct sembuf
{
short sem_num; // 信号量组中对应的序号,0~sem_nums-1
short sem_op; // 信号量值在一次操作中的改变量
short sem_flg; // IPC_NOWAIT, SEM_UNDO
}
其中 sem_op 是一次操作中的信号量的改变量:
-
若
sem_op > 0
,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。 -
若
sem_op < 0
,请求 sem_op 的绝对值的资源。- 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
- 当相应的资源数不能满足请求时,这个操作与
sem_flg
有关。- sem_flg 指定
IPC_NOWAIT
,则semop函数出错返回EAGAIN
。 - sem_flg 没有指定
IPC_NOWAIT
,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:- 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
- sem_flg 指定
-
若
sem_op == 0
,进程阻塞直到信号量的相应值为0:- 当信号量已经为0,函数立即返回。
- 如果信号量的值不为0,则依据
sem_flg
决定函数动作:- sem_flg指定
IPC_NOWAIT
,则出错返回EAGAIN
。 - sem_flg没有指定
IPC_NOWAIT
,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:- 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
- sem_flg指定
在semctl
函数中的命令有多种,这里就说两个常用的:
SETVAL
:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。IPC_RMID
:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。
代码:
该例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。
#include<stdio.h>
#include<stdlib.h>
#include<sys/sem.h>
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, 0, SETVAL, tmp) == -1)
{
perror("Init Semaphore Error");
return -1;
}
return 0;
}
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
// 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
{
perror("Delete Semaphore Error");
return -1;
}
return 0;
}
int main()
{
int sem_id; // 信号量集ID
key_t key;
pid_t pid;
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 创建信号量集,其中只有一个信号量
if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
{
perror("semget error");
exit(1);
}
// 初始化:初值设为0资源被占用
init_sem(sem_id, 0);
if((pid = fork()) == -1)
perror("Fork Error");
else if(pid == 0) /*子进程*/
{
sleep(2);
printf("Process child: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
}
else /*父进程*/
{
sem_p(sem_id); /*等待资源*/
printf("Process father: pid=%d\n", getpid());
sem_v(sem_id); /*释放资源*/
del_sem(sem_id); /*删除信号量集*/
}
return 0;
}
共享内存
共享内存:在Linux中,每个进程使用独立的进程地址空间。进程间是不能访问其他进程的地址空间。共享内存间通过建立一段允许其他进程使用过的内存段,实现资源和数据的共享。
特点:
-
共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
-
因为多个进程可以同时操作,所以需要进行同步。
-
信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。
原型:
#include <sys/shm.h>
int shmget(key_t key, size_t size, int flag);// 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
void *shmat(int shm_id, const void *addr, int flag);// 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
int shmdt(void *addr);// 断开与共享内存的连接:成功返回0,失败返回-1
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);// 控制共享内存的相关信息:成功返回0,失败返回-1
当key参数为IPC_PRIVATE时候,shmid=0,每次都会重新建立一个共享内存。当用ftok创建k时候,则shmid不等于0。这两种方式的区别是IPC_PRIVATE类似有亲缘关系的进程共享内存,fotk类似无亲缘关系的进程的共享内存。
当用shmget
函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。
当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat
函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。
shmdt
函数是用来断开shmat
建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。
shmctl
函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID
(从系统中删除该共享内存)。
代码:
使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。
- 共享内存用来传递数据;
- 信号量用来同步;
- 消息队列用来 在客户端修改了共享内存后 通知服务器读取。
server.c
#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy
// 消息队列结构
struct msg_form {
long mtype;
char mtext;
};
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// 初始化信号量
int init_sem(int sem_id, int value)
{
union semun tmp;
tmp.val = value;
if(semctl(sem_id, 0, SETVAL, tmp) == -1)
{
perror("Init Semaphore Error");
return -1;
}
return 0;
}
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
// 删除信号量集
int del_sem(int sem_id)
{
union semun tmp;
if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
{
perror("Delete Semaphore Error");
return -1;
}
return 0;
}
// 创建一个信号量集
int creat_sem(key_t key)
{
int sem_id;
if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
{
perror("semget error");
exit(-1);
}
init_sem(sem_id, 1); /*初值设为1资源未占用*/
return sem_id;
}
int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
char data[] = "this is server";
struct shmid_ds buf1; /*用于删除共享内存*/
struct msqid_ds buf2; /*用于删除消息队列*/
struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 创建共享内存
if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)
{
perror("Create Shared Memory Error");
exit(1);
}
// 连接共享内存
shm = (char*)shmat(shmid, 0, 0);
if((int)shm == -1)
{
perror("Attach Shared Memory Error");
exit(1);
}
// 创建消息队列
if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
{
perror("msgget error");
exit(1);
}
// 创建信号量
semid = creat_sem(key);
// 读数据
while(1)
{
msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/
if(msg.mtext == 'q') /*quit - 跳出循环*/
break;
if(msg.mtext == 'r') /*read - 读共享内存*/
{
sem_p(semid);
printf("%s\n",shm);
sem_v(semid);
}
}
// 断开连接
shmdt(shm);
/*删除共享内存、消息队列、信号量*/
shmctl(shmid, IPC_RMID, &buf1);
msgctl(msqid, IPC_RMID, &buf2);
del_sem(semid);
return 0;
}
client.c
#include<stdio.h>
#include<stdlib.h>
#include<sys/shm.h> // shared memory
#include<sys/sem.h> // semaphore
#include<sys/msg.h> // message queue
#include<string.h> // memcpy
// 消息队列结构
struct msg_form {
long mtype;
char mtext;
};
// 联合体,用于semctl初始化
union semun
{
int val; /*for SETVAL*/
struct semid_ds *buf;
unsigned short *array;
};
// P操作:
// 若信号量值为1,获取资源并将信号量值-1
// 若信号量值为0,进程挂起等待
int sem_p(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = -1; /*P操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("P operation Error");
return -1;
}
return 0;
}
// V操作:
// 释放资源并将信号量值+1
// 如果有进程正在挂起等待,则唤醒它们
int sem_v(int sem_id)
{
struct sembuf sbuf;
sbuf.sem_num = 0; /*序号*/
sbuf.sem_op = 1; /*V操作*/
sbuf.sem_flg = SEM_UNDO;
if(semop(sem_id, &sbuf, 1) == -1)
{
perror("V operation Error");
return -1;
}
return 0;
}
int main()
{
key_t key;
int shmid, semid, msqid;
char *shm;
struct msg_form msg;
int flag = 1; /*while循环条件*/
// 获取key值
if((key = ftok(".", 'z')) < 0)
{
perror("ftok error");
exit(1);
}
// 获取共享内存
if((shmid = shmget(key, 1024, 0)) == -1)
{
perror("shmget error");
exit(1);
}
// 连接共享内存
shm = (char*)shmat(shmid, 0, 0);
if((int)shm == -1)
{
perror("Attach Shared Memory Error");
exit(1);
}
// 创建消息队列
if ((msqid = msgget(key, 0)) == -1)
{
perror("msgget error");
exit(1);
}
// 获取信号量
if((semid = semget(key, 0, 0)) == -1)
{
perror("semget error");
exit(1);
}
// 写数据
printf("***************************************\n");
printf("* IPC *\n");
printf("* Input r to send data to server. *\n");
printf("* Input q to quit. *\n");
printf("***************************************\n");
while(flag)
{
char c;
printf("Please input command: ");
scanf("%c", &c);
switch(c)
{
case 'r':
printf("Data to send: ");
sem_p(semid); /*访问资源*/
scanf("%s", shm);
sem_v(semid); /*释放资源*/
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
msg.mtype = 888;
msg.mtext = 'r'; /*发送消息通知服务器读数据*/
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
break;
case 'q':
msg.mtype = 888;
msg.mtext = 'q';
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
flag = 0;
break;
default:
printf("Wrong input!\n");
/*清空标准输入缓冲区*/
while((c=getchar())!='\n' && c!=EOF);
}
}
// 断开连接
shmdt(shm);
return 0;
}