title: LeetCode No.34
categories:
- OJ
- LeetCode
tags:
- Programing
- LeetCode
- OJ
LeetCode第三十四题
题目描述
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums 是一个非递减数组
-109 <= target <= 109
代码
class Solution(object):
# 二分查找边界坐标 如果没有则返回[-1,-1]
# 查找左侧边界
def leftbinarySearch(self,nums,l,r,target):
if nums[l] == target:
if l == 0:
return 0
elif nums[l-1] != target:
return l
elif nums[l-1] == target:
return self.leftbinarySearch(nums, l-1, r, target)
elif r > l:
mid = int((r+l)/2)
if nums[mid] > target:
return self.leftbinarySearch(nums, l, mid-1,target)
elif nums[mid] < target:
return self.leftbinarySearch(nums, mid+1, r, target)
elif nums[mid] == target:
return self.leftbinarySearch(nums, mid, r, target)
else:
return -1
# 查找右侧边界
def rightbinarySearch(self,nums,l,r,target):
if nums[r] == target:
if r == len(nums)-1:
return len(nums)-1
elif nums[r + 1] != target:
return r
elif nums[r + 1] == target:
return self.rightbinarySearch(nums, l, r+1, target)
elif r > l:
mid = int((r + l) / 2)
if nums[mid] > target:
return self.rightbinarySearch(nums, l, mid - 1, target)
elif nums[mid] < target:
return self.rightbinarySearch(nums, mid + 1, r, target)
elif nums[mid] == target:
return self.rightbinarySearch(nums, l, mid, target)
else:
return -1
def searchRange(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
核心思想:
由于给定的数组是一个非递减数组,因IC同样可以使用33的中的二分法来查找到target的左右边界index
例子:
[5,7,7,8,8,8,10], target = 8
左右边界点分别为3、5
"""
if len(nums) == 0:
return [-1,-1]
a = self.leftbinarySearch(nums,0,len(nums)-1,target)
b = self.rightbinarySearch(nums,0,len(nums)-1,target)
boundarylist = []
boundarylist.append(a)
boundarylist.append(b)
return boundarylist
if __name__ == '__main__':
s = Solution()
print(s.searchRange([5,7,7,8,8,10],8))