PyTorch 自定义 Dataset 及训练集、测试集划分方法

  • 实例 1:自定义数据集类,torch.utils.data.random_split() 划分训练集和测试集,通过普通遍历方式使用自定义数据集中的样本
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader

random_data = np.random.randn(10,3)
print(random_data)
print("#"*len(random_data))


class MyDataSet(Dataset):
    def __init__(self, loaded_data):
        self.data = loaded_data
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return self.data[idx]
    

custom_dataset = MyDataSet(random_data)

for i in range(len(custom_dataset)):
    print(custom_dataset[i])
    

train_size = int(len(custom_dataset) * 0.7)
test_size = len(custom_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(custom_dataset, [train_size, test_size])

print(len(train_dataset))
print(len(test_dataset))

print("#"*len(custom_dataset))

for i in range(len(train_dataset)):
    print(train_dataset[i])

print("#"*len(train_dataset))
    
for i in range(len(test_dataset)):
    print(test_dataset[i])
    
  • 输出:

  • 实例 2:自定义数据集类,torch.utils.data.random_split() 划分训练集和测试集,通过 dataloader 方式使用自定义数据集中的样本

import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader

random_data = np.random.randn(10,3)
print(random_data)
print("#"*len(random_data))


class MyDataSet(Dataset):
    def __init__(self, loaded_data):
        self.data = loaded_data
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return self.data[idx]
    

custom_dataset = MyDataSet(random_data)

for i in range(len(custom_dataset)):
    print(custom_dataset[i])
    

train_size = int(len(custom_dataset) * 0.5)
validate_size = int(len(custom_dataset) * 0.2)
test_size = len(custom_dataset) - validate_size - train_size
train_dataset, validate_dataset, test_dataset = torch.utils.data.random_split(custom_dataset, [train_size, validate_size, test_size])


train_loader = DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=0)
validate_loader = DataLoader(validate_dataset, batch_size=1, shuffle=False, num_workers=0)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0)

print(len(train_loader))
print(len(validate_loader))
print(len(test_loader))



for i, train_sample in enumerate(train_loader):
    print("{} {}".format(i, train_sample))

    
for j, validate_sample in enumerate(validate_loader):
    print("{} {}".format(j, validate_sample))


for k, test_sample in enumerate(test_loader):
    print("{} {}".format(k, test_sample))

参考

  • https://pytorch.org/tutorials/recipes/recipes/custom_dataset_transforms_loader.html?highlight=custom%20dataset

猜你喜欢

转载自blog.csdn.net/sdnuwjw/article/details/111227327
今日推荐