一、设备匹配方法
1.1、未使用设备树的设备匹配方法
在没有使用设备树以前, uboot 会向 Linux 内核传递一个叫做 machine id 的值, machine id也就是设备 ID,告诉 Linux 内核自己是个什么设备,看看 Linux 内核是否支持。 Linux 内核是支持很多设备的,针对每一个设备(板子), Linux内核都用MACHINE_START和MACHINE_END来定义一个 machine_desc 结构体来描述这个设备,比如在文件 arch/arm/mach-imx/machmx35_3ds.c 中有如下定义:
MACHINE_START(MX35_3DS, "Freescale MX35PDK")
/* Maintainer: Freescale Semiconductor, Inc */
.atag_offset = 0x100,
.map_io = mx35_map_io,
.init_early = imx35_init_early,
.init_irq = mx35_init_irq,
.init_time = mx35pdk_timer_init,
.init_machine = mx35_3ds_init,
.init_late = mx35_3ds_late_init,
.restart = mxc_restart,
MACHINE_END
上述代码就是定义了“ Freescale MX35PDK”这个设备,其中 MACHINE_START 和MACHINE_END 定义在文件 arch/arm/include/asm/mach/arch.h 中,内容如下:
/*
* Set of macros to define architecture features. This is built into
* a table by the linker.
*/
#define MACHINE_START(_type,_name) \
static const struct machine_desc __mach_desc_##_type \
__used \
__attribute__((__section__(".arch.info.init"))) = {
\
.nr = MACH_TYPE_##_type, \
.name = _name,
#define MACHINE_END \
};
根据 MACHINE_START 和 MACHINE_END 的宏定义,将示例代码 展开后如下所示:
static const struct machine_desc __mach_desc_MX35_3DS \
__used \
__attribute__((__section__(".arch.info.init"))) = {
.nr = MACH_TYPE_MX35_3DS,
.name = "Freescale MX35PDK",
/* Maintainer: Freescale Semiconductor, Inc */
.atag_offset = 0x100,
.map_io = mx35_map_io,
.init_early = imx35_init_early,
.init_irq = mx35_init_irq,
.init_time = mx35pdk_timer_init,
.init_machine = mx35_3ds_init,
.init_late = mx35_3ds_late_init,
.restart = mxc_restart,
从示例代码 中可以看出,这里定义了一个 machine_desc 类型的结构体变量__mach_desc_MX35_3DS , 这 个 变 量 存 储 在 “ .arch.info.init ” 段 中 。 第 4 行 的MACH_TYPE_MX35_3DS 就 是 “ Freescale MX35PDK ” 这 个 板 子 的 machine id 。MACH_TYPE_MX35_3DS 定义在文件 include/generated/mach-types.h 中,此文件定义了大量的machine id,内容如下所示:
#define MACH_TYPE_OMAP_LDP 1639
#define MACH_TYPE_MX35_3DS 1645
#define MACH_TYPE_NEUROS_OSD2 1647
MACH_TYPE_MX35_3DS 的值,为 1645。 uboot 会给 Linux 内核传递 machine id 这个参数, Linux 内核会检查这个 machine id,其实就是将 machine id 与这些 MACH_TYPE_XXX 宏进行对比,看看有没有相等的,如果相等的话就表示 Linux 内核支持这个设备,如果不支持的话那么这个设备就没法启动 Linux 内核。
1.2、使用设备树的设备匹配方法
当 Linux 内 核 引 入 设 备 树 以 后 就 不 再 使 用 MACHINE_START 了 , 而 是 换 为 了DT_MACHINE_START。 DT_MACHINE_START 也定义在文件 arch/arm/include/asm/mach/arch.h里面,定义如下:
#define DT_MACHINE_START(_name, _namestr) \
static const struct machine_desc __mach_desc_##_name \
__used \
__attribute__((__section__(".arch.info.init"))) = {
\
.nr = ~0, \
.name = _namestr,
#endif
可以看出, DT_MACHINE_START 和 MACHINE_START 基本相同,只是.nr 的设置不同,在 DT_MACHINE_START 里面直接将.nr 设置为~0。说明引入设备树以后不会再根据 machine id 来检查 Linux 内核是否支持某个设备了。打开文件 arch/arm/mach-imx/mach-imx6ul.c,有如下所示内容:
static const char * const imx6ul_dt_compat[] __initconst = {
"fsl,imx6ul",
"fsl,imx6ull",
NULL,
};
DT_MACHINE_START(IMX6UL, "Freescale i.MX6 Ultralite (Device Tree)")
.init_irq = imx6ul_init_irq,
.init_machine = imx6ul_init_machine,
.init_late = imx6ul_init_late,
.dt_compat = imx6ul_dt_compat,
MACHINE_END
machine_desc 结构体中有个.dt_compat 成员变量,此成员变量保存着本设备兼容属性,代码 中设置.dt_compat = imx6ul_dt_compat,imx6ul_dt_compat 表里面有"fsl,imx6ul"和"fsl,imx6ull"这两个兼容值。只要某个设备(板子)根节点“ /”的 compatible 属性值与imx6ul_dt_compat 表中的任何一个值相等,那么就表示 Linux 内核支持此设备。
Linux 内核是根据设备树根节点的 compatible 属性来匹配出对应的 machine_desc的流程为, Linux 内核调用 start_kernel 函数来启动内核, start_kernel 函数会调用setup_arch 函数来匹配 machine_desc, setup_arch 函数定义在文件 arch/arm/kernel/setup.c 中,函数内容如下:
void __init setup_arch(char **cmdline_p)
{
const struct machine_desc *mdesc;
setup_processor();
mdesc = setup_machine_fdt(__atags_pointer);
if (!mdesc)
mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
if (!mdesc) {
early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
__atags_pointer);
if (__atags_pointer)
early_print(" r2[]=%*ph\n", 16,
phys_to_virt(__atags_pointer));
dump_machine_table();
}
machine_desc = mdesc;
machine_name = mdesc->name;
dump_stack_set_arch_desc("%s", mdesc->name);
if (mdesc->reboot_mode != REBOOT_HARD)
reboot_mode = mdesc->reboot_mode;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
/* populate cmd_line too for later use, preserving boot_command_line */
strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = cmd_line;
early_fixmap_init();
early_ioremap_init();
parse_early_param();
#ifdef CONFIG_MMU
early_mm_init(mdesc);
#endif
setup_dma_zone(mdesc);
xen_early_init();
efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any mmeory
*/
adjust_lowmem_bounds();
arm_memblock_init(mdesc);
/* Memory may have been removed so recalculate the bounds. */
adjust_lowmem_bounds();
early_ioremap_reset();
paging_init(mdesc);
request_standard_resources(mdesc);
if (mdesc->restart)
arm_pm_restart = mdesc->restart;
unflatten_device_tree();
arm_dt_init_cpu_maps();
psci_dt_init();
#ifdef CONFIG_SMP
if (is_smp()) {
if (!mdesc->smp_init || !mdesc->smp_init()) {
if (psci_smp_available())
smp_set_ops(&psci_smp_ops);
else if (mdesc->smp)
smp_set_ops(mdesc->smp);
}
smp_init_cpus();
smp_build_mpidr_hash();
}
#endif
if (!is_smp())
hyp_mode_check();
reserve_crashkernel();
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
handle_arch_irq = mdesc->handle_irq;
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
if (mdesc->init_early)
mdesc->init_early();
}
第 6行,调用 setup_machine_fdt 函数来获取匹配的 machine_desc,参数就是 atags 的首地址,也就是 uboot 传递给 Linux 内核的 dtb 文件首地址, setup_machine_fdt 函数的返回值就是找到的最匹配的 machine_desc。
函数 setup_machine_fdt 定义在文件 arch/arm/kernel/devtree.c 中,内容如下:
/**
* setup_machine_fdt - Machine setup when an dtb was passed to the kernel
* @dt_phys: physical address of dt blob
*
* If a dtb was passed to the kernel in r2, then use it to choose the
* correct machine_desc and to setup the system.
*/
const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
{
const struct machine_desc *mdesc, *mdesc_best = NULL;
#if defined(CONFIG_ARCH_MULTIPLATFORM) || defined(CONFIG_ARM_SINGLE_ARMV7M)
DT_MACHINE_START(GENERIC_DT, "Generic DT based system")
.l2c_aux_val = 0x0,
.l2c_aux_mask = ~0x0,
MACHINE_END
mdesc_best = &__mach_desc_GENERIC_DT;
#endif
if (!dt_phys || !early_init_dt_verify(phys_to_virt(dt_phys)))
return NULL;
mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);
if (!mdesc) {
const char *prop;
int size;
unsigned long dt_root;
early_print("\nError: unrecognized/unsupported "
"device tree compatible list:\n[ ");
dt_root = of_get_flat_dt_root();
prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
while (size > 0) {
early_print("'%s' ", prop);
size -= strlen(prop) + 1;
prop += strlen(prop) + 1;
}
early_print("]\n\n");
dump_machine_table(); /* does not return */
}
/* We really don't want to do this, but sometimes firmware provides buggy data */
if (mdesc->dt_fixup)
mdesc->dt_fixup();
early_init_dt_scan_nodes();
/* Change machine number to match the mdesc we're using */
__machine_arch_type = mdesc->nr;
return mdesc;
}
第 23 行,调用函数 of_flat_dt_match_machine 来获取匹配的 machine_desc,参数 mdesc_best是 默 认 的 machine_desc , 参 数arch_get_next_mach 是 个 函 数 , 此 函 数 定 义 在 定 义 在arch/arm/kernel/devtree.c 文件中。找到匹配的 machine_desc 的过程就是用设备树根节点的compatible 属性值和 Linux 内核中 machine_desc下.dt_compat 的值比较,如果相等的话就表示找到匹配的machine_desc, arch_get_next_mach 函数的工作就是获取 Linux 内核中下一个 machine_desc 结构体。
of_flat_dt_match_machine 函数,此函数定义在文件 drivers/of/fdt.c 中,内容如下:
/**
* of_flat_dt_match_machine - Iterate match tables to find matching machine.
*
* @default_match: A machine specific ptr to return in case of no match.
* @get_next_compat: callback function to return next compatible match table.
*
* Iterate through machine match tables to find the best match for the machine
* compatible string in the FDT.
*/
const void * __init of_flat_dt_match_machine(const void *default_match,
const void * (*get_next_compat)(const char * const**))
{
const void *data = NULL;
const void *best_data = default_match;
const char *const *compat;
unsigned long dt_root;
unsigned int best_score = ~1, score = 0;
dt_root = of_get_flat_dt_root();
while ((data = get_next_compat(&compat))) {
score = of_flat_dt_match(dt_root, compat);
if (score > 0 && score < best_score) {
best_data = data;
best_score = score;
}
}
if (!best_data) {
const char *prop;
int size;
pr_err("\n unrecognized device tree list:\n[ ");
prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
if (prop) {
while (size > 0) {
printk("'%s' ", prop);
size -= strlen(prop) + 1;
prop += strlen(prop) + 1;
}
}
printk("]\n\n");
return NULL;
}
pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
return best_data;
}
第 19 行,通过函数 of_get_flat_dt_root 获取设备树根节点。
第 20~25 行,此循环就是查找匹配的 machine_desc 过程,第 21 行的 of_flat_dt_match 函数会将根节点 compatible 属性的值和每个 machine_desc 结构体中. dt_compat 的值进行比较,直至找到匹配的那个 machine_desc。
总结一下, Linux 内核通过根节点 compatible 属性找到对应的设备的函数调用过程。