Opencv学习笔记 特征检测和描述模块(1) SimpleBlobDetector类(从图像中提取blobs)

一、概述

        该类实现了一个从图像中提取 blob 的简单算法:

  1. 通过使用从 minThreshold(包括)到 maxThreshold(不包括)的多个阈值以及相邻阈值之间的距离 thresholdStep,将源图像转换为二值图像。
  2. 通过 findContours 从每个二值图像中提取连通分量并计算它们的中心。
  3. 通过坐标对多个二值图像的中心进行分组。闭合中心形成一组,对应一个 blob,由 minDistBetweenBlobs 参数控制。
  4. 从这些组中,估计 blob 的最终中心及其半径,并作为关键点的位置和大小返回。

        此类对返回的 blob 执行多次过滤。您应该将 filterBy* 设置为 true/false 以打开/关闭相应的过滤。可用的过滤器:

  • 按颜色。此过滤器将 blob 中心的二值图像的强度与 blobColor 进行比较。如果它们不同,则会过滤掉 blob。使用 blobColor = 0 提取深色斑点,使用 blobColor = 255 提取浅色斑点。
  • 按面积。提取的 blob 具有介于 minArea(包括)和 maxArea(不包括)之间的区域。
  • 通过圆形过滤。提取的斑点具有圆形度(4∗π∗Areaperimeter∗perimeter) 在 minCircularity(包括)和 maxCircularity(不包括)之间。
  • 通过最小惯量与最大惯量之比。提取的 blob 在 minInertiaRatio(包括)和 maxInertiaRatio(不包括)之间具有此比率。
  • 通过凸性。提取的 blob 具有 minConvexity(包括)和 maxConvexity(不包括)之间的凸度(面积/blob 凸包面积)。

        调整参数的默认值以提取深色圆形斑点。

二、类参考

1、函数原型

cv::SimpleBlobDetector::create	(	const SimpleBlobDetector::Params & 	parameters = SimpleBlobDetector::Params()	)	

2、参数详解 

        见下面源码

三、OpenCV源码

1、源码路径

opencv\modules\features2d\src\blobdetector.cpp

2、源码代码

/*
*  SimpleBlobDetector
*/
SimpleBlobDetector::Params::Params()
{
    thresholdStep = 10;
    minThreshold = 50;
    maxThreshold = 220;
    minRepeatability = 2;
    minDistBetweenBlobs = 10;

    filterByColor = true;
    blobColor = 0;

    filterByArea = true;
    minArea = 25;
    maxArea = 5000;

    filterByCircularity = false;
    minCircularity = 0.8f;
    maxCircularity = std::numeric_limits<float>::max();

    filterByInertia = true;
    //minInertiaRatio = 0.6;
    minInertiaRatio = 0.1f;
    maxInertiaRatio = std::numeric_limits<float>::max();

    filterByConvexity = true;
    //minConvexity = 0.8;
    minConvexity = 0.95f;
    maxConvexity = std::numeric_limits<float>::max();
}
void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray mask)
{
    CV_INSTRUMENT_REGION();

    keypoints.clear();
    CV_Assert(params.minRepeatability != 0);
    Mat grayscaleImage;
    if (image.channels() == 3 || image.channels() == 4)
        cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
    else
        grayscaleImage = image.getMat();

    if (grayscaleImage.type() != CV_8UC1) {
        CV_Error(Error::StsUnsupportedFormat, "Blob detector only supports 8-bit images!");
    }

    std::vector < std::vector<Center> > centers;
    for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
    {
        Mat binarizedImage;
        threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);

        std::vector < Center > curCenters;
        findBlobs(grayscaleImage, binarizedImage, curCenters);
        if(params.maxThreshold - params.minThreshold <= params.thresholdStep) {
            // if the difference between min and max threshold is less than the threshold step
            // we're only going to enter the loop once, so we need to add curCenters
            // to ensure we still use minDistBetweenBlobs
            centers.push_back(curCenters);
        }
        std::vector < std::vector<Center> > newCenters;
        for (size_t i = 0; i < curCenters.size(); i++)
        {
            bool isNew = true;
            for (size_t j = 0; j < centers.size(); j++)
            {
                double dist = norm(centers[j][centers[j].size() / 2 ].location - curCenters[i].location);
                isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
                if (!isNew)
                {
                    centers[j].push_back(curCenters[i]);

                    size_t k = centers[j].size() - 1;
                    while( k > 0 && curCenters[i].radius < centers[j][k-1].radius )
                    {
                        centers[j][k] = centers[j][k-1];
                        k--;
                    }
                    centers[j][k] = curCenters[i];

                    break;
                }
            }
            if (isNew)
                newCenters.push_back(std::vector<Center> (1, curCenters[i]));
        }
        std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
    }

    for (size_t i = 0; i < centers.size(); i++)
    {
        if (centers[i].size() < params.minRepeatability)
            continue;
        Point2d sumPoint(0, 0);
        double normalizer = 0;
        for (size_t j = 0; j < centers[i].size(); j++)
        {
            sumPoint += centers[i][j].confidence * centers[i][j].location;
            normalizer += centers[i][j].confidence;
        }
        sumPoint *= (1. / normalizer);
        KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
        keypoints.push_back(kpt);
    }

    if (!mask.empty())
    {
        KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
    }
}

Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
{
    return makePtr<SimpleBlobDetectorImpl>(params);
}

String SimpleBlobDetector::getDefaultName() const
{
    return (Feature2D::getDefaultName() + ".SimpleBlobDetector");
}

四、效果图像示例

原图
绘制找到的blob点

猜你喜欢

转载自blog.csdn.net/bashendixie5/article/details/125330102