一、概述
该类实现了一个从图像中提取 blob 的简单算法:
- 通过使用从 minThreshold(包括)到 maxThreshold(不包括)的多个阈值以及相邻阈值之间的距离 thresholdStep,将源图像转换为二值图像。
- 通过 findContours 从每个二值图像中提取连通分量并计算它们的中心。
- 通过坐标对多个二值图像的中心进行分组。闭合中心形成一组,对应一个 blob,由 minDistBetweenBlobs 参数控制。
- 从这些组中,估计 blob 的最终中心及其半径,并作为关键点的位置和大小返回。
此类对返回的 blob 执行多次过滤。您应该将 filterBy* 设置为 true/false 以打开/关闭相应的过滤。可用的过滤器:
- 按颜色。此过滤器将 blob 中心的二值图像的强度与 blobColor 进行比较。如果它们不同,则会过滤掉 blob。使用 blobColor = 0 提取深色斑点,使用 blobColor = 255 提取浅色斑点。
- 按面积。提取的 blob 具有介于 minArea(包括)和 maxArea(不包括)之间的区域。
- 通过圆形过滤。提取的斑点具有圆形度(4∗π∗Areaperimeter∗perimeter) 在 minCircularity(包括)和 maxCircularity(不包括)之间。
- 通过最小惯量与最大惯量之比。提取的 blob 在 minInertiaRatio(包括)和 maxInertiaRatio(不包括)之间具有此比率。
- 通过凸性。提取的 blob 具有 minConvexity(包括)和 maxConvexity(不包括)之间的凸度(面积/blob 凸包面积)。
调整参数的默认值以提取深色圆形斑点。
二、类参考
1、函数原型
cv::SimpleBlobDetector::create ( const SimpleBlobDetector::Params & parameters = SimpleBlobDetector::Params() )
2、参数详解
见下面源码
三、OpenCV源码
1、源码路径
opencv\modules\features2d\src\blobdetector.cpp
2、源码代码
/*
* SimpleBlobDetector
*/
SimpleBlobDetector::Params::Params()
{
thresholdStep = 10;
minThreshold = 50;
maxThreshold = 220;
minRepeatability = 2;
minDistBetweenBlobs = 10;
filterByColor = true;
blobColor = 0;
filterByArea = true;
minArea = 25;
maxArea = 5000;
filterByCircularity = false;
minCircularity = 0.8f;
maxCircularity = std::numeric_limits<float>::max();
filterByInertia = true;
//minInertiaRatio = 0.6;
minInertiaRatio = 0.1f;
maxInertiaRatio = std::numeric_limits<float>::max();
filterByConvexity = true;
//minConvexity = 0.8;
minConvexity = 0.95f;
maxConvexity = std::numeric_limits<float>::max();
}
void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray mask)
{
CV_INSTRUMENT_REGION();
keypoints.clear();
CV_Assert(params.minRepeatability != 0);
Mat grayscaleImage;
if (image.channels() == 3 || image.channels() == 4)
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
else
grayscaleImage = image.getMat();
if (grayscaleImage.type() != CV_8UC1) {
CV_Error(Error::StsUnsupportedFormat, "Blob detector only supports 8-bit images!");
}
std::vector < std::vector<Center> > centers;
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
{
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
std::vector < Center > curCenters;
findBlobs(grayscaleImage, binarizedImage, curCenters);
if(params.maxThreshold - params.minThreshold <= params.thresholdStep) {
// if the difference between min and max threshold is less than the threshold step
// we're only going to enter the loop once, so we need to add curCenters
// to ensure we still use minDistBetweenBlobs
centers.push_back(curCenters);
}
std::vector < std::vector<Center> > newCenters;
for (size_t i = 0; i < curCenters.size(); i++)
{
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
double dist = norm(centers[j][centers[j].size() / 2 ].location - curCenters[i].location);
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
if (!isNew)
{
centers[j].push_back(curCenters[i]);
size_t k = centers[j].size() - 1;
while( k > 0 && curCenters[i].radius < centers[j][k-1].radius )
{
centers[j][k] = centers[j][k-1];
k--;
}
centers[j][k] = curCenters[i];
break;
}
}
if (isNew)
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
}
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
}
for (size_t i = 0; i < centers.size(); i++)
{
if (centers[i].size() < params.minRepeatability)
continue;
Point2d sumPoint(0, 0);
double normalizer = 0;
for (size_t j = 0; j < centers[i].size(); j++)
{
sumPoint += centers[i][j].confidence * centers[i][j].location;
normalizer += centers[i][j].confidence;
}
sumPoint *= (1. / normalizer);
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
keypoints.push_back(kpt);
}
if (!mask.empty())
{
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
}
}
Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
{
return makePtr<SimpleBlobDetectorImpl>(params);
}
String SimpleBlobDetector::getDefaultName() const
{
return (Feature2D::getDefaultName() + ".SimpleBlobDetector");
}