Swift - LeetCode - 2 的幂

携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第20天,点击查看活动详情 

题目

给你一个整数 n n ,请你判断该整数是否是 2 2 的幂次方。如果是,返回 true;否则,返回 false

如果存在一个整数 x x 使得  n = = 2 x n == 2^{x} ,则认为 n n 2 2 的幂次方。

示例 1:

  • 输入:n = 1
  • 输出:true
  • 解释: 2 0 2^{0} = 1

示例 2:

  • 输入:n = 16
  • 输出:true
  • 解释: 2 4 2^{4} = 16

示例 3:

  • 输入:n = 3
  • 输出:false

示例 4:

  • 输入:n = 4
  • 输出:true

方法一:二进制表示

思路及解法

一个数 n n 是 2 的幂,当且仅当 n n 是正整数,并且 n n 的二进制表示中仅包含 1 个 1。

因此我们可以考虑使用位运算,将 n n 的二进制表示中最低位的那个 1 提取出来,再判断剩余的数值是否为 0 即可。下面介绍两种常见的与「二进制表示中最低位」相关的位运算技巧。

第一个技巧是

\texttt{n & (n - 1)}

其中 & \texttt{\&} 表示按位与运算。该位运算技巧可以直接将 n n 二进制表示的最低位 1 1 移除,它的原理如下:

假设 n n 的二进制表示为 ( a 10 0 ) 2 (a 10\cdots 0)_2 ,其中 a a 表示若干个高位, 1 1 表示最低位的那个 1, 0 0 0⋯0 表示后面的若干个 0 0 ,那么 n 1 n−1 的二进制表示为:

( a 01 1 ) 2 (a01⋯1)_2

我们将 ( a 10 0 ) 2 (a 10\cdots 0)_2 ( a 01 1 ) 2 (a 01\cdots1)_2 进行按位与运算,高位 a a 不变,在这之后的所有位都会变为 0 0 ,这样我们就将最低位的那个 1 1 移除了。

因此,如果 n n 是正整数并且 \texttt{n & (n - 1) = 0},那么 n n 就是 2 2 的幂。

​第二个技巧是

\texttt{n & (-n)}

其中 n -n n n 的相反数,是一个负数。该位运算技巧可以直接获取 n n 二进制表示的最低位的 1 1

由于负数是按照补码规则在计算机中存储的, n -n 的二进制表示为 n n 的二进制表示的每一位取反再加上 1 1 ,因此它的原理如下:

假设 n n 的二进制表示为 ( a 10 0 ) 2 (a 10\cdots 0)_2 ,其中 a a 表示若干个高位, 1 1 表示最低位的那个 1 1 0 0 0\cdots 0 表示后面的若干个 0 0 ,那么 n -n 的二进制表示为:

( a 01 1 ) 2 + ( 1 ) 2 = ( a 10 0 ) 2 (a 01\cdots1)_2 + (1)_2 = (a 10\cdots0)_2

其中 a ˉ \bar{a} 表示将 a a 每一位取反。我们将 ( a 10 0 ) 2 (a 10\cdots 0)_2 ( a ˉ 10 0 ) 2 (\bar{a} 10\cdots0)_2 进行按位与运算,高位全部变为 0 0 ,最低位的 1 1 以及之后的所有 0 0 不变,这样我们就获取了 n n 二进制表示的最低位的 1 1

因此,如果 n n 是正整数并且 \texttt{n & (-n) = n},那么 n n 就是 2 2 的幂。

代码

class Solution {
    func isPowerOfTwo(_ n: Int) -> Bool {
        return n > 0 && (n & (n - 1)) == 0
    }
}
复制代码
class Solution {
    func isPowerOfTwo(_ n: Int) -> Bool {
        return n > 0 && (n & -n) == n
    }
}
复制代码

复杂度分析

  • 时间复杂度: O ( 1 ) O(1)

  • 空间复杂度: O ( 1 ) O(1)

方法二:判断是否为最大 2 的幂的约数

思路及解法

除了使用二进制表示判断之外,还有一种较为取巧的做法。

在题目给定的 32 32 位有符号整数的范围内,最大的 2 2 的幂为 2 30 = 1073741824 2^{30} = 1073741824 。我们只需要判断 n n 是否是 2 30 2^{30} 的约数即可。

代码

class Solution {
    func isPowerOfTwo(_ n: Int) -> Bool {
        let BIG = 1 << 30
        return n > 0 && BIG % n == 0
    }
}
复制代码

复杂度分析

  • 时间复杂度: O ( 1 ) O(1)

  • 空间复杂度: O ( 1 ) O(1)

猜你喜欢

转载自juejin.im/post/7131930710935339044
今日推荐