每天一例多线程[day20]-----ReentrantLock

ReentrantLock是JDK的并发包下locks包下的工具类,ReentrantLock比synchonized性能要好,但是jdk1.8之后synchonized的性能也得到大幅度提升,不亚于ReentrantLock。

锁的演变

 ReentrantLock是由synchonized和对象锁演变而来。回忆以下之前使用synchronized和Object锁的方式:

public void method1(){
		synchronized (this) {	//对象锁
			try {
				System.out.println("do method1..");
				Thread.sleep(2000);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}
	
public void method2(){		//类锁
		synchronized (ObjectLock.class) {
			try {
				System.out.println("do method2..");
				Thread.sleep(2000);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}
        private Object lock = new Object();
	public void method3(){		//任何对象锁
		synchronized (lock) {
			try {
				System.out.println("do method3..");
				Thread.sleep(2000);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}

而ReentrantLock的使用则灵活很多:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class UseReentrantLock {
	
	private Lock lock = new ReentrantLock();
	
	public void method1(){
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
			Thread.sleep(1000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
			Thread.sleep(1000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void method2(){
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
			Thread.sleep(2000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
			Thread.sleep(1000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public static void main(String[] args) {

		final UseReentrantLock ur = new UseReentrantLock();
		Thread t1 = new Thread(new Runnable() {
			@Override
			public void run() {
				ur.method1();
				ur.method2();
			}
		}, "t1");

		t1.start();
		try {
			Thread.sleep(10);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		//System.out.println(ur.lock.getQueueLength());
	}
	
	
}

打印:

当前线程:t1进入method1..
当前线程:t1退出method1..
当前线程:t1进入method2..
当前线程:t1退出method2..

分析:我们定义了一个线程t1,在t1中执行method1和method2两个方法,这两个方法都加了ReentrantLock,那么在执行时如果method1先获得lock,就会执行method1的方法,unlock释放锁后,才能进入method2再次获得锁并执行method2,然后释放锁。


锁的通信

Object对象的wait和notify必须配合synchonized使用。而ReentrantLock配合Condition使用。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;


public class UseCondition {


	private Lock lock = new ReentrantLock();
	private Condition condition = lock.newCondition();
	
	public void method1(){
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
			condition.await();	//阻塞并释放锁     类似于 Object wait
			System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void method2(){
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
			condition.signal();		//唤醒 不释放锁  类似于Object notify
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public static void main(String[] args) {
		
		final UseCondition uc = new UseCondition();
		Thread t1 = new Thread(new Runnable() {
			@Override
			public void run() {
				uc.method1();
			}
		}, "t1");
		Thread t2 = new Thread(new Runnable() {
			@Override
			public void run() {
				uc.method2();
			}
		}, "t2");
		t1.start();


		t2.start();
	}
	
	
	
}

打印:

当前线程:t1进入等待状态..
当前线程:t1释放锁..
当前线程:t2进入..
当前线程:t2发出唤醒..
当前线程:t1继续执行...

分析:我们定义t1和t2两个线程,t1执行method1,t2执行method2,t1进入method1后获得lock,进入等待,3s后调用condition.await();释放锁,进入阻塞状态。然后t2线程获得lock,3s后发出唤醒condition.signal();接着t1被唤醒,打印“继续执行...”


多Condition

我们可以通过1个lock对象产生多个Condition进行多线程之间的交互,很灵活。可以使得唤醒部分线程,而其他线程继续等待通知。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class UseManyCondition {

	private ReentrantLock lock = new ReentrantLock();
	private Condition c1 = lock.newCondition();
	private Condition c2 = lock.newCondition();
	
	public void m1(){
		try {
			lock.lock();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待..");
			c1.await();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void m2(){
		try {
			lock.lock();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待..");
			c1.await();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void m3(){
		try {
			lock.lock();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待..");
			c2.await();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void m4(){
		try {
			lock.lock();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
			c1.signalAll();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public void m5(){
		try {
			lock.lock();
			System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
			c2.signal();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}
	
	public static void main(String[] args) {
		
		
		final UseManyCondition umc = new UseManyCondition();
		Thread t1 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m1();
			}
		},"t1");
		Thread t2 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m2();
			}
		},"t2");
		Thread t3 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m3();
			}
		},"t3");
		Thread t4 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m4();
			}
		},"t4");
		Thread t5 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m5();
			}
		},"t5");
		
		t1.start();	// c1先阻塞
		t2.start();	// c1先阻塞
		t3.start();	// c2先阻塞
		

		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}

		t4.start();	// 唤醒 c1
		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		t5.start();	// 唤醒c2
		
	}
	
	
	
}

分析:定义5个线程:t1、t2、t3、t4、t5,分别执行m1、m2、m3、m4、m5这五个方法。m1和m2都阻塞了c1这个Condition,而m3阻塞的是c2这个Condition,m4中唤醒了c1,m5唤醒了c2,t1和t2跟t3先执行,那么线程t1和t2跟t3都分别被c1和c2阻塞,直到t4唤醒了c1,t1和t2继续执行,t5唤醒了t2,t3继续执行。

打印:

当前线程:t1进入方法m1等待..
当前线程:t2进入方法m2等待..
当前线程:t3进入方法m3等待..
当前线程:t4唤醒..
当前线程:t1方法m1继续..
当前线程:t2方法m2继续..
当前线程:t5唤醒..
当前线程:t3方法m3继续..

 了解:ReentrantLock默认非公平,性能比公平锁要高


猜你喜欢

转载自blog.csdn.net/shengqianfeng/article/details/80646481
今日推荐