浏览器中的页面模块

浏览器中的页面模块

Chrome开发者工具

Chrome 开发者工具有很多重要的面板,比如与性能相关的有网络面板、Performance 面板、内存面板等,与调试页面相关的有 Elements 面板、Sources 面板、Console 面板等。

image-20230409131128402

image-20230409131223970

网络面板

Network网络面板由控制器、过滤器、抓图信息、时间线、详细列表和下载信息概要这 6 个区域构成

image-20230409131330917

控制器

image-20230409131519100

  • 红色圆点的按钮,表示“开始 / 暂停抓包”
  • “全局搜索”按钮,这个功能就非常重要了,可以在所有下载资源中搜索相关内容,还可以快速定位到某几个你想要的文件上。
  • Disable cache,即“禁止从 Cache 中加载资源”的功能,它在调试 Web 应用的时候非常有用,因为开启了 Cache 会影响到网络性能测试的结果。
  • Online 按钮,是“模拟 2G/3G”功能,它可以限制带宽,模拟弱网情况下页面的展现情况,然后你就可以根据实际展示情况来动态调整策略,以便让 Web 应用更加适用于这些弱网。

过滤器

主要就是起过滤功能。因为有时候一个页面有太多内容在详细列表区域中展示了,而你可能只想查看 JavaScript 文件或者 CSS 文件,这时候就可以通过过滤器模块来筛选你想要的文件类型。

抓图信息

抓图信息区域,可以用来分析用户等待页面加载时间内所看到的内容,分析用户实际的体验情况。比如,如果页面加载 1 秒多之后屏幕截图还是白屏状态,这时候就需要分析是网络还是代码的问题了。(勾选面板上的“Capture screenshots”即可启用屏幕截图。)

时间线

时间线,主要用来展示 HTTP、HTTPS、WebSocket 加载的状态和时间的一个关系,用于直观感受页面的加载过程。如果是多条竖线堆叠在一起,那说明这些资源被同时被加载。至于具体到每个文件的加载信息,还需要用到下面要讲的详细列表。

详细列表

详细记录了每个资源从发起请求到完成请求这中间所有过程的状态,以及最终请求完成的数据信息。通过该列表,你就能很容易地去诊断一些网络问题。

列表的属性

image-20230409132010773

默认情况下,列表是按请求发起的时间来排序的,最早发起请求的资源在顶部。当然也可以按照返回状态码、请求类型、请求时长、内容大小等基础属性排序,只需点击相应属性即可。

详细信息

image-20230409132108314

可以在此查看请求列表中任意一项的请求行和请求头信息,还可以查看响应行、响应头和响应体

单个资源的时间线

image-20230409132213390

发起一个 HTTP 请求之后,浏览器首先查找缓存,如果缓存没有命中,那么继续发起 DNS 请求获取 IP 地址,然后利用 IP 地址和服务器端建立 TCP 连接,再发送 HTTP 请求,等待服务器响应;不过,如果服务器响应头中包含了重定向的信息,那么整个流程就需要重新再走一遍。这就是在浏览器中一个 HTTP 请求的基础流程。

image-20230409132301054

第一个是 Queuing,也就是排队的意思,当浏览器发起一个请求的时候,会有很多原因导致该请求不能被立即执行,而是需要排队等待。导致请求处于排队状态的原因有很多。

  • 首先,页面中的资源是有优先级的,比如 CSS、HTML、JavaScript 等都是页面中的核心文件,所以优先级最高;而图片、视频、音频这类资源就不是核心资源,优先级就比较低。通常当后者遇到前者时,就需要“让路”,进入待排队状态。
  • 其次,浏览器会为每个域名最多维护 6 个 TCP 连接,如果发起一个 HTTP 请求时,这 6 个 TCP 连接都处于忙碌状态,那么这个请求就会处于排队状态。
  • 最后,网络进程在为数据分配磁盘空间时,新的 HTTP 请求也需要短暂地等待磁盘分配结束。

等待排队完成之后,就要进入发起连接的状态了。不过在发起连接之前,还有一些原因可能导致连接过程被推迟,这个推迟就表现在面板中的Stalled上,它表示停滞的意思。

这里需要额外说明的是,如果你使用了代理服务器,还会增加一个Proxy Negotiation阶段,也就是代理协商阶段,它表示代理服务器连接协商所用的时间,不过在上图中没有体现出来,因为这里没有使用代理服务器。

接下来,就到了Initial connection/SSL 阶段了,也就是和服务器建立连接的阶段,这包括了建立 TCP 连接所花费的时间;不过如果你使用了 HTTPS 协议,那么还需要一个额外的 SSL 握手时间,这个过程主要是用来协商一些加密信息的。

和服务器建立好连接之后,网络进程会准备请求数据,并将其发送给网络,这就是Request sent 阶段。通常这个阶段非常快,因为只需要把浏览器缓冲区的数据发送出去就结束了,并不需要判断服务器是否接收到了,所以这个时间通常不到 1 毫秒。

数据发送出去了,接下来就是等待接收服务器第一个字节的数据,这个阶段称为 Waiting (TTFB),通常也称为“第一字节时间”。 TTFB 是反映服务端响应速度的重要指标,对服务器来说,TTFB 时间越短,就说明服务器响应越快。

接收到第一个字节之后,进入陆续接收完整数据的阶段,也就是Content Download 阶段,这意味着从第一字节时间到接收到全部响应数据所用的时间。

优化时间线上耗时项
排队(Queuing)时间过久

排队时间过久,大概率是由浏览器为每个域名最多维护 6 个连接导致的。那么基于这个原因,你就可以让 1 个站点下面的资源放在多个域名下面,比如放到 3 个域名下面,这样就可以同时支持 18 个连接了,这种方案称为域名分片技术。除了域名分片技术外,建议你把站点升级到 HTTP2,因为 HTTP2 已经没有每个域名最多维护 6 个 TCP 连接的限制了

第一字节时间(TTFB)时间过久
  • 服务器生成页面数据的时间过久。对于动态网页来说,服务器收到用户打开一个页面的请求时,首先要从数据库中读取该页面需要的数据,然后把这些数据传入到模板中,模板渲染后,再返回给用户。服务器在处理这个数据的过程中,可能某个环节会出问题。
    • 想办法去提高服务器的处理速度,比如通过增加各种缓存的技术
  • 网络的原因。比如使用了低带宽的服务器,或者本来用的是电信的服务器,可联通的网络用户要来访问你的服务器,这样也会拖慢网速。
    • 可以使用 CDN 来缓存一些静态文件
  • 发送请求头时带上了多余的用户信息。比如一些不必要的 Cookie 信息,服务器接收到这些 Cookie 信息之后可能需要对每一项都做处理,这样就加大了服务器的处理时长。
    • 在发送请求时就去尽可能地减少一些不必要的 Cookie 数据信息
Content Download 时间过久

如果单个请求的 Content Download 花费了大量时间,有可能是字节数太多的原因导致的。这时候你就需要减少文件大小,比如压缩、去掉源码中不必要的注释等方法。

下载信息概要

下载信息概要中,你要重点关注下 DOMContentLoaded 和 Load 两个事件,以及这两个事件的完成时间。

  • DOMContentLoaded,这个事件发生后,说明页面已经构建好 DOM 了,这意味着构建 DOM 所需要的 HTML 文件、JavaScript 文件、CSS 文件都已经下载完成了。
  • Load,说明浏览器已经加载了所有的资源(图像、样式表等)。

通过下载信息概要面板,你可以查看触发这两个事件所花费的时间。

DOM树

从网络传给渲染引擎的 HTML 文件字节流是无法直接被渲染引擎理解的,所以要将其转化为渲染引擎能够理解的内部结构,这个结构就是 DOM。DOM 提供了对 HTML 文档结构化的表述。在渲染引擎中,DOM 有三个层面的作用。

  • 从页面的视角来看,DOM 是生成页面的基础数据结构。
  • 从 JavaScript 脚本视角来看,DOM 提供给 JavaScript 脚本操作的接口,通过这套接口,JavaScript 可以对 DOM 结构进行访问,从而改变文档的结构、样式和内容。
  • 从安全视角来看,DOM 是一道安全防护线,一些不安全的内容在 DOM 解析阶段就被拒之门外了。

DOM 树如何生成

HTML 解析器并不是等整个文档加载完成之后再解析的,而是网络进程加载了多少数据,HTML 解析器便解析多少数据

网络进程接收到响应头之后,会根据响应头中的 content-type 字段来判断文件的类型,比如 content-type 的值是“text/html”,那么浏览器就会判断这是一个 HTML 类型的文件,然后为该请求选择或者创建一个渲染进程。渲染进程准备好之后,网络进程和渲染进程之间会建立一个共享数据的管道,网络进程接收到数据后就往这个管道里面放,而渲染进程则从管道的另外一端不断地读取数据,并同时将读取的数据“喂”给 HTML 解析器。

image-20230409133152357

字节流转换为 DOM 需要三个阶段。

第一个阶段,通过分词器将字节流转换为 Token。

V8 编译 JavaScript 过程中的第一步是做词法分析,将 JavaScript 先分解为一个个 Token。解析 HTML 也是一样的,需要通过分词器先将字节流转换为一个个 Token,分为 Tag Token 和文本 Token。

image-20230409133338739

Tag Token 又分 StartTag 和 EndTag,比如``就是 StartTag ,就是EndTag,分别对于图中的蓝色和红色块,文本 Token 对应的绿色块

第二个和第三个阶段是同步进行的,需要将 Token 解析为 DOM 节点,并将 DOM 节点添加到 DOM 树中

HTML 解析器维护了一个Token 栈结构,该 Token 栈主要用来计算节点之间的父子关系,在第一个阶段中生成的 Token 会被按照顺序压到这个栈中。具体的处理规则如下所示:

  • 如果压入到栈中的是StartTag Token,HTML 解析器会为该 Token 创建一个 DOM 节点,然后将该节点加入到 DOM 树中,它的父节点就是栈中相邻的那个元素生成的节点。
  • 如果分词器解析出来是文本 Token,那么会生成一个文本节点,然后将该节点加入到 DOM 树中,文本 Token 是不需要压入到栈中,它的父节点就是当前栈顶 Token 所对应的 DOM 节点。
  • 如果分词器解析出来的是EndTag 标签,比如是 EndTag div,HTML 解析器会查看 Token 栈顶的元素是否是 StarTag div,如果是,就将 StartTag div 从栈中弹出,表示该 div 元素解析完成。

通过分词器产生的新 Token 就这样不停地压栈和出栈,整个解析过程就这样一直持续下去,直到分词器将所有字节流分词完成。

<html>
<body>
    <div>1</div>
    <div>test</div>
</body>
</html>

这段代码以字节流的形式传给了 HTML 解析器,经过分词器处理,解析出来的第一个 Token 是 StartTag html,解析出来的 Token 会被压入到栈中,并同时创建一个 html 的 DOM 节点,将其加入到 DOM 树中。

HTML 解析器开始工作时,会默认创建了一个根为 document 的空 DOM 结构,同时会将一个 StartTag document 的 Token 压入栈底。然后经过分词器解析出来的第一个 StartTag html Token 会被压入到栈中,并创建一个 html 的 DOM 节点,添加到 document 上,如下图所示:

image-20230409133808263

image-20230409133908191

接下来解析出来的是第一个 div 的文本 Token,渲染引擎会为该 Token 创建一个文本节点,并将该 Token 添加到 DOM 中,它的父节点就是当前 Token 栈顶元素对应的节点

image-20230409133949056

再接下来,分词器解析出来第一个 EndTag div,这时候 HTML 解析器会去判断当前栈顶的元素是否是 StartTag div,如果是则从栈顶弹出 StartTag div,如下图所示:

image-20230409134016430

image-20230409134029909

JavaScript 是如何影响 DOM 生成的

JavaScript 会阻塞 DOM 生成,而样式文件又会阻塞 JavaScript 的执行,所以在实际的工程中需要重点关注 JavaScript 文件和样式表文件,使用不当会影响到页面性能的。

<html>
<body>
    <div>1</div>
    <script>
    let div1 = document.getElementsByTagName('div')[0]
    div1.innerText = 'time.geekbang'
    </script>
    <div>test</div>
</body>
</html>

在两段 div 中间插入了一段 JavaScript 脚本,这段脚本的解析过程就有点不一样了。<script>标签之前,所有的解析流程还是和之前介绍的一样,但是解析到<script>标签时,渲染引擎判断这是一段脚本,此时 HTML 解析器就会暂停 DOM 的解析,因为接下来的 JavaScript 可能要修改当前已经生成的 DOM 结构。

image-20230409134401595

这时候 HTML 解析器暂停工作,JavaScript 引擎介入,并执行 script 标签中的这段脚本,因为这段 JavaScript 脚本修改了 DOM 中第一个 div 中的内容,所以执行这段脚本之后,div 节点内容已经修改为 time.geekbang 了。脚本执行完成之后,HTML 解析器恢复解析过程,继续解析后续的内容,直至生成最终的 DOM。

通常需要在页面中引入 JavaScript 文件,这个解析过程就稍微复杂了些

//foo.js
let div1 = document.getElementsByTagName('div')[0]
div1.innerText = 'time.geekbang'
<html>
<body>
    <div>1</div>
    <script type="text/javascript" src='foo.js'></script>
    <div>test</div>
</body>
</html>

执行到 JavaScript 标签时,暂停整个 DOM 的解析,执行 JavaScript 代码,不过这里执行 JavaScript 时,需要先下载这段 JavaScript 代码。这里需要重点关注下载环境,因为JavaScript 文件的下载过程会阻塞 DOM 解析,而通常下载又是非常耗时的,会受到网络环境、JavaScript 文件大小等因素的影响。

不过 Chrome 浏览器做了很多优化,其中一个主要的优化是预解析操作。当渲染引擎收到字节流之后,会开启一个预解析线程,用来分析 HTML 文件中包含的 JavaScript、CSS 等相关文件,解析到相关文件之后,预解析线程会提前下载这些文件。

再回到 DOM 解析上,引入 JavaScript 线程会阻塞 DOM,不过也有一些相关的策略来规避,比如使用 CDN 来加速 JavaScript 文件的加载,压缩 JavaScript 文件的体积。另外,如果 JavaScript 文件中没有操作 DOM 相关代码,就可以将该 JavaScript 脚本设置为异步加载,通过 async 或 defer 来标记代码,使用方式如下所示:

<!-- 使用 async 标志的脚本文件一旦加载完成,会立即执行;-->
<script async type="text/javascript" src='foo.js'></script>

<!-- 使用了 defer 标记的脚本文件,需要在 DOMContentLoaded 事件之前执行。-->
<script defer type="text/javascript" src='foo.js'></script>

//theme.css
div {
    
    color:blue}

<html>
    <head>
        <style src='theme.css'></style>
    </head>
<body>
    <div>1</div>
    <script>
            let div1 = document.getElementsByTagName('div')[0]
            div1.innerText = 'time.geekbang' // 需要 DOM
            div1.style.color = 'red'  // 需要 CSSOM
        </script>
    <div>test</div>
</body>
</html>

该示例中,JavaScript 代码出现了 div1.style.color = ‘red' 的语句,它是用来操纵 CSSOM 的,所以在执行 JavaScript 之前,需要先解析 JavaScript 语句之上所有的 CSS 样式。所以如果代码里引用了外部的 CSS 文件,那么在执行 JavaScript 之前,还需要等待外部的 CSS 文件下载完成,并解析生成 CSSOM 对象之后,才能执行 JavaScript 脚本。

而 JavaScript 引擎在解析 JavaScript 之前,是不知道 JavaScript 是否操纵了 CSSOM 的,所以渲染引擎在遇到 JavaScript 脚本时,不管该脚本是否操纵了 CSSOM,都会执行 CSS 文件下载,解析操作,再执行 JavaScript 脚本。

所以说 JavaScript 脚本是依赖样式表的,这又多了一个阻塞过程。

渲染流水线中的 CSS

//theme.css
div{
    
     
    color : coral;
    background-color:black
}
<html>
<head>
    <link href="theme.css" rel="stylesheet">
</head>
<body>
    <div>geekbang com</div>
</body>
</html>

image-20230409135542387

首先是发起主页面的请求,这个发起请求方可能是渲染进程,也有可能是浏览器进程,发起的请求被送到网络进程中去执行。网络进程接收到返回的 HTML 数据之后,将其发送给渲染进程,渲染进程会解析 HTML 数据并构建 DOM。这里需要特别注意下,请求 HTML 数据和构建 DOM 中间有一段空闲时间,这个空闲时间有可能成为页面渲染的瓶颈。

当渲染进程接收 HTML 文件字节流时,会先开启一个预解析线程,如果遇到 JavaScript 文件或者 CSS 文件,那么预解析线程会提前下载这些数据。对于上面的代码,预解析线程会解析出来一个外部的 theme.css 文件,并发起 theme.css 的下载。这里也有一个空闲时间需要你注意一下,就是在 DOM 构建结束之后、theme.css 文件还未下载完成的这段时间内,渲染流水线无事可做,因为下一步是合成布局树,而合成布局树需要 CSSOM 和 DOM,所以这里需要等待 CSS 加载结束并解析成 CSSOM。

渲染引擎也是无法直接理解 CSS 文件内容的,所以需要将其解析成渲染引擎能够理解的结构,这个结构就是 CSSOM。和 DOM 一样,CSSOM 也具有两个作用,第一个是提供给 JavaScript 操作样式表的能力,第二个是为布局树的合成提供基础的样式信息。这个 CSSOM 体现在 DOM 中就是document.styleSheets

等 DOM 和 CSSOM 都构建好之后,渲染引擎就会构造布局树。布局树的结构基本上就是复制 DOM 树的结构,不同之处在于 DOM 树中那些不需要显示的元素会被过滤掉,如 display:none 属性的元素、head 标签、script 标签等。复制好基本的布局树结构之后,渲染引擎会为对应的 DOM 元素选择对应的样式信息,这个过程就是样式计算。样式计算完成之后,渲染引擎还需要计算布局树中每个元素对应的几何位置,这个过程就是计算布局。通过样式计算和计算布局就完成了最终布局树的构建。再之后,就该进行后续的绘制操作了。

//theme.css
div{
    
     
    color : coral;
    background-color:black
}
<html>
<head>
    <link href="theme.css" rel="stylesheet">
</head>
<body>
    <div>geekbang com</div>
    <script>
        console.log('time.geekbang.org')
    </script>
    <div>geekbang com</div>
</body>
</html>

在 body 标签内部加了一个简单的 JavaScript。有了 JavaScript,渲染流水线就有点不一样了,可以参考下面这张渲染流水线图:

image-20230409140357519

在解析 DOM 的过程中,如果遇到了 JavaScript 脚本,那么需要先暂停 DOM 解析去执行 JavaScript,因为 JavaScript 有可能会修改当前状态下的 DOM。

不过在执行 JavaScript 脚本之前,如果页面中包含了外部 CSS 文件的引用,或者通过 style 标签内置了 CSS 内容,那么渲染引擎还需要将这些内容转换为 CSSOM,因为 JavaScript 有修改 CSSOM 的能力,所以在执行 JavaScript 之前,还需要依赖 CSSOM。也就是说 CSS 在部分情况下也会阻塞 DOM 的生成。

来看看更加复杂一点的情况,如果在 body 中被包含的是 JavaScript 外部引用文件,Demo 代码如下所示:

//theme.css
div{
    
     
    color : coral;
    background-color:black
}

//foo.js
console.log('time.geekbang.org')

<html>
<head>
    <link href="theme.css" rel="stylesheet">
</head>
<body>
    <div>geekbang com</div>
    <script src='foo.js'></script>
    <div>geekbang com</div>
</body>
</html>

image-20230409140624898

在接收到 HTML 数据之后的预解析过程中,HTML 预解析器识别出来了有 CSS 文件和 JavaScript 文件需要下载,然后就同时发起这两个文件的下载请求,需要注意的是,这两个文件的下载过程是重叠的,所以下载时间按照最久的那个文件来算。

后面的流水线就和前面是一样的了,不管 CSS 文件和 JavaScript 文件谁先到达,都要先等到 CSS 文件下载完成并生成 CSSOM,然后再执行 JavaScript 脚本,最后再继续构建 DOM,构建布局树,绘制页面。

影响页面展示的因素以及优化策略

渲染流水线影响到了首次页面展示的速度,而首次页面展示的速度又直接影响到了用户体验

看看从发起 URL 请求开始,到首次显示页面的内容,在视觉上经历的三个阶段。

  • 第一个阶段,等请求发出去之后,到提交数据阶段,这时页面展示出来的还是之前页面的内容。
    • 影响第一个阶段的因素主要是网络或者是服务器处理这块儿
  • 第二个阶段,提交数据之后渲染进程会创建一个空白页面,我们通常把这段时间称为解析白屏,并等待 CSS 文件和 JavaScript 文件的加载完成,生成 CSSOM 和 DOM,然后合成布局树,最后还要经过一系列的步骤准备首次渲染。
    • 这个阶段的主要问题是白屏时间,如果白屏时间过久,就会影响到用户体验。为了缩短白屏时间,分析这个阶段的主要任务,包括了解析 HTML、下载 CSS、下载 JavaScript、生成 CSSOM、执行 JavaScript、生成布局树、绘制页面一系列操作。
    • 通常情况下的瓶颈主要体现在下载 CSS 文件、下载 JavaScript 文件和执行 JavaScript
    • 所以要想缩短白屏时长,可以有以下策略:
      • 通过内联 JavaScript、内联 CSS 来移除这两种类型的文件下载,这样获取到 HTML 文件之后就可以直接开始渲染流程了。
      • 但并不是所有的场合都适合内联,那么还可以尽量减少文件大小,比如通过 webpack 等工具移除一些不必要的注释,并压缩 JavaScript 文件。
      • 还可以将一些不需要在解析 HTML 阶段使用的 JavaScript 标记上 sync 或者 defer。
      • 对于大的 CSS 文件,可以通过媒体查询属性,将其拆分为多个不同用途的 CSS 文件,这样只有在特定的场景下才会加载特定的 CSS 文件。
  • 第三个阶段,等首次渲染完成之后,就开始进入完整页面的生成阶段了,然后页面会一点点被绘制出来。

分层和合成机制

显示器是怎么显示图像的

每个显示器都有固定的刷新频率,通常是 60HZ,也就是每秒更新 60 张图片,更新的图片都来自于显卡中一个叫前缓冲区的地方,显示器所做的任务很简单,就是每秒固定读取 60 次前缓冲区中的图像,并将读取的图像显示到显示器上。

显卡做什么

显卡的职责就是合成新的图像,并将图像保存到后缓冲区中,一旦显卡把合成的图像写到后缓冲区,系统就会让后缓冲区和前缓冲区互换,这样就能保证显示器能读取到最新显卡合成的图像。通常情况下,显卡的更新频率和显示器的刷新频率是一致的。但有时候,在一些复杂的场景中,显卡处理一张图片的速度会变慢,这样就会造成视觉上的卡顿。

帧 VS 帧率

渲染流水线生成的每一副图片称为一帧,把渲染流水线每秒更新了多少帧称为帧率,比如滚动过程中 1 秒更新了 60 帧,那么帧率就是 60Hz(或者 60FPS)。

如何生成一帧图像

任意一帧的生成方式,有重排、重绘合成三种方式。

这三种方式的渲染路径是不同的,通常渲染路径越长,生成图像花费的时间就越多

重排,它需要重新根据 CSSOM 和 DOM 来计算布局树,这样生成一幅图片时,会让整个渲染流水线的每个阶段都执行一遍,如果布局复杂的话,就很难保证渲染的效率了。

重绘因为没有了重新布局的阶段,操作效率稍微高点,但是依然需要重新计算绘制信息,并触发绘制操作之后的一系列操作。

相较于重排和重绘,合成操作的路径就显得非常短了,并不需要触发布局和绘制两个阶段,如果采用了 GPU,那么合成的效率会非常高。

Chrome 中的合成技术,可以用三个词来概括总结:分层、分块合成

分层和合成

通常页面的组成是非常复杂的,有的页面里要实现一些复杂的动画效果,比如点击菜单时弹出菜单的动画特效,滚动鼠标滚轮时页面滚动的动画效果,当然还有一些炫酷的 3D 动画特效。如果没有采用分层机制,从布局树直接生成目标图片的话,那么每次页面有很小的变化时,都会触发重排或者重绘机制,这种“牵一发而动全身”的绘制策略会严重影响页面的渲染效率。

为了提升每帧的渲染效率,Chrome 引入了分层和合成的机制。

把一张网页想象成是由很多个图片叠加在一起的,每个图片就对应一个图层,Chrome 合成器最终将这些图层合成了用于显示页面的图片。在这个过程中,将素材分解为多个图层的操作就称为分层,最后将这些图层合并到一起的操作就称为合成。所以,分层和合成通常是一起使用的。

考虑到一个页面被划分为两个层,当进行到下一帧的渲染时,上面的一帧可能需要实现某些变换,如平移、旋转、缩放、阴影或者 Alpha 渐变,这时候合成器只需要将两个层进行相应的变化操作就可以了,显卡处理这些操作驾轻就熟,所以这个合成过程时间非常短。

Chrome 是怎么实现分层和合成机制的

在 Chrome 的渲染流水线中,分层体现在生成布局树之后,渲染引擎会根据布局树的特点将其转换为层树(Layer Tree),层树是渲染流水线后续流程的基础结构。

层树中的每个节点都对应着一个图层,下一步的绘制阶段就依赖于层树中的节点。绘制阶段其实并不是真正地绘出图片,而是将绘制指令组合成一个列表,比如一个图层要设置的背景为黑色,并且还要在中间画一个圆形,那么绘制过程会生成|Paint BackGroundColor:Black | Paint Circle|这样的绘制指令列表,绘制过程就完成了。

有了绘制列表之后,就需要进入光栅化阶段了,光栅化就是按照绘制列表中的指令生成图片。每一个图层都对应一张图片,合成线程有了这些图片之后,会将这些图片合成为“一张”图片,并最终将生成的图片发送到后缓冲区。这就是一个大致的分层、合成流程。

合成操作是在合成线程上完成的,这也就意味着在执行合成操作时,是不会影响到主线程执行的。这就是为什么经常主线程卡住了,但是 CSS 动画依然能执行的原因。

分块

分层是从宏观上提升了渲染效率,那么分块则是从微观层面提升了渲染效率。

通常情况下,页面的内容都要比屏幕大得多,显示一个页面时,如果等待所有的图层都生成完毕,再进行合成的话,会产生一些不必要的开销,也会让合成图片的时间变得更久。

因此,合成线程会将每个图层分割为大小固定的图块,然后优先绘制靠近视口的图块,这样就可以大大加速页面的显示速度。不过有时候, 即使只绘制那些优先级最高的图块,也要耗费不少的时间,因为涉及到一个很关键的因素——纹理上传,这是因为从计算机内存上传到 GPU 内存的操作会比较慢。

为了解决这个问题,Chrome 又采取了一个策略:在首次合成图块的时候使用一个低分辨率的图片。比如可以是正常分辨率的一半,分辨率减少一半,纹理就减少了四分之三。在首次显示页面内容的时候,将这个低分辨率的图片显示出来,然后合成器继续绘制正常比例的网页内容,当正常比例的网页内容绘制完成后,再替换掉当前显示的低分辨率内容。这种方式尽管会让用户在开始时看到的是低分辨率的内容,但是也比用户在开始时什么都看不到要好。

利用分层技术优化代码

在写 Web 应用的时候,你可能经常需要对某个元素做几何形状变换、透明度变换或者一些缩放操作,如果使用 JavaScript 来写这些效果,会牵涉到整个渲染流水线,所以 JavaScript 的绘制效率会非常低下。

这时你可以使用 will-change 来告诉渲染引擎你会对该元素做一些特效变换,CSS 代码如下:

.box {
    
    
will-change: transform, opacity;
}

这段代码就是提前告诉渲染引擎 box 元素将要做几何变换和透明度变换操作,这时候渲染引擎会将该元素单独实现一帧,等这些变换发生时,渲染引擎会通过合成线程直接去处理变换,这些变换并没有涉及到主线程,这样就大大提升了渲染的效率。这也是 CSS 动画比 JavaScript 动画高效的原因

所以,如果涉及到一些可以使用合成线程来处理 CSS 特效或者动画的情况,就尽量使用 will-change 来提前告诉渲染引擎,让它为该元素准备独立的层。但是凡事都有两面性,每当渲染引擎为一个元素准备一个独立层的时候,它占用的内存也会大大增加,因为从层树开始,后续每个阶段都会多一个层结构,这些都需要额外的内存,所以你需要恰当地使用 will-change。

  • 能直接在合成线程中完成的任务都不会改变图层的内容,如文字信息的改变,布局的改变,颜色的改变,统统不会涉及,涉及到这些内容的变化就要牵涉到重排或者重绘了。

  • 能直接在合成线程中实现的是整个图层的几何变换,透明度变换,阴影等,这些变换都不会影响到图层的内容。

  • 比如滚动页面的时候,整个页面内容没有变化,这时候做的其实是对图层做上下移动,这种操作直接在合成线程里面就可以完成了。

让页面更快地显示和响应

通常一个页面有三个阶段:加载阶段、交互阶段和关闭阶段

  • 加载阶段,是指从发出请求到渲染出完整页面的过程,影响到这个阶段的主要因素有网络和 JavaScript 脚本。
  • 交互阶段,主要是从页面加载完成到用户交互的整合过程,影响到这个阶段的主要因素是 JavaScript 脚本。
  • 关闭阶段,主要是用户发出关闭指令后页面所做的一些清理操作。

加载阶段

一个典型的渲染流水线

image-20230409153203146

并非所有的资源都会阻塞页面的首次绘制,比如图片、音频、视频等文件就不会阻塞页面的首次渲染;而 JavaScript、首次请求的 HTML 资源文件、CSS 文件是会阻塞首次渲染的,因为在构建 DOM 的过程中需要 HTML 和 JavaScript 文件,在构造渲染树的过程中需要用到 CSS 文件。

这些能阻塞网页首次渲染的资源称为关键资源。基于关键资源,可以继续细化出来三个影响页面首次渲染的核心因素。

第一个是关键资源个数。关键资源个数越多,首次页面的加载时间就会越长。比如上图中的关键资源个数就是 3 个,1 个 HTML 文件、1 个 JavaScript 和 1 个 CSS 文件。

第二个是关键资源大小。通常情况下,所有关键资源的内容越小,其整个资源的下载时间也就越短,那么阻塞渲染的时间也就越短。上图中关键资源的大小分别是 6KB、8KB 和 9KB,那么整个关键资源大小就是 23KB。

第三个是请求关键资源需要多少个 RTT(Round Trip Time)。当使用 TCP 协议传输一个文件时,比如这个文件大小是 0.1M,由于 TCP 的特性,这个数据并不是一次传输到服务端的,而是需要拆分成一个个数据包来回多次进行传输的。RTT 就是这里的往返时延。它是网络中一个重要的性能指标,表示从发送端发送数据开始,到发送端收到来自接收端的确认,总共经历的时延。通常 1 个 HTTP 的数据包在 14KB 左右,所以 1 个 0.1M 的页面就需要拆分成 8 个包来传输了,也就是说需要 8 个 RTT。

结合上图来看看它的关键资源请求需要多少个 RTT。首先是请求 HTML 资源,大小是 6KB,小于 14KB,所以 1 个 RTT 就可以解决了。至于 JavaScript 和 CSS 文件,这里需要注意一点,由于渲染引擎有一个预解析的线程,在接收到 HTML 数据之后,预解析线程会快速扫描 HTML 数据中的关键资源,一旦扫描到了,会立马发起请求,可以认为 JavaScript 和 CSS 是同时发起请求的,所以它们的请求是重叠的,那么计算它们的 RTT 时,只需要计算体积最大的那个数据就可以了。这里最大的是 CSS 文件(9KB),所以按照 9KB 来计算,同样由于 9KB 小于 14KB,所以 JavaScript 和 CSS 资源也就可以算成 1 个 RTT。也就是说,上图中关键资源请求共花费了 2 个 RTT。

总的优化原则就是减少关键资源个数,降低关键资源大小,降低关键资源的 RTT 次数

  • 如何减少关键资源的个数?一种方式是可以将 JavaScript 和 CSS 改成内联的形式,比如上图的 JavaScript 和 CSS,若都改成内联模式,那么关键资源的个数就由 3 个减少到了 1 个。另一种方式,如果 JavaScript 代码没有 DOM 或者 CSSOM 的操作,则可以改成 sync 或者 defer 属性;同样对于 CSS,如果不是在构建页面之前加载的,则可以添加取消阻止显现的标志。当 JavaScript 标签加上了 sync 或者 defer、CSSlink 属性之前加上了取消阻止显现的标志后,它们就变成了非关键资源了。
  • 如何减少关键资源的大小?可以压缩 CSS 和 JavaScript 资源,移除 HTML、CSS、JavaScript 文件中一些注释内容,也可以通过前面讲的取消 CSS 或者 JavaScript 中关键资源的方式。
  • 如何减少关键资源 RTT 的次数?可以通过减少关键资源的个数和减少关键资源的大小搭配来实现。除此之外,还可以使用 CDN 来减少每次 RTT 时长。

交互阶段

互阶段的优化,其实就是在谈渲染进程渲染帧的速度,因为在交互阶段,帧的渲染速度决定了交互的流畅度。

交互阶段的渲染流水线,在交互阶段没有了加载关键资源和构建 DOM、CSSOM 流程,通常是由 JavaScript 触发交互动画的。

image-20230409154056512

大部分情况下,生成一个新的帧都是由 JavaScript 通过修改 DOM 或者 CSSOM 来触发的。还有另外一部分帧是由 CSS 来触发的。

如果在计算样式阶段发现有布局信息的修改,那么就会触发重排操作,然后触发后续渲染流水线的一系列操作,这个代价是非常大的。

同样如果在计算样式阶段没有发现有布局信息的修改,只是修改了颜色一类的信息,那么就不会涉及到布局相关的调整,所以可以跳过布局阶段,直接进入绘制阶段,这个过程叫重绘。不过重绘阶段的代价也是不小的。

还有另外一种情况,通过 CSS 实现一些变形、渐变、动画等特效,这是由 CSS 触发的,并且是在合成线程上执行的,这个过程称为合成。因为它不会触发重排或者重绘,而且合成操作本身的速度就非常快,所以执行合成是效率最高的方式。

一个大的原则就是让单个帧的生成速度变快

  • 减少 JavaScript 脚本执行时间

有时 JavaScript 函数的一次执行时间可能有几百毫秒,这就严重霸占了主线程执行其他渲染任务的时间。针对这种情况可以采用以下两种策略:

一种是将一次执行的函数分解为多个任务,使得每次的执行时间不要过久。

另一种是采用 Web Workers。可以把 Web Workers 当作主线程之外的一个线程,在 Web Workers 中是可以执行 JavaScript 脚本的,不过 Web Workers 中没有 DOM、CSSOM 环境,这意味着在 Web Workers 中是无法通过 JavaScript 来访问 DOM 的,所以可以把一些和 DOM 操作无关且耗时的任务放到 Web Workers 中去执行。

在交互阶段,对 JavaScript 脚本总的原则就是不要一次霸占太久主线程。

  • 避免强制同步布局

正常情况下的布局操作。通过 DOM 接口执行添加元素或者删除元素等操作后,是需要重新计算样式和布局的,不过正常情况下这些操作都是在另外的任务中异步完成的,这样做是为了避免当前的任务占用太长的主线程时间。

<html>
<body>
    <div id="mian_div">
        <li id="time_li">time</li>
        <li>geekbang</li>
    </div>
 
    <p id="demo"> 强制布局 demo</p>
    <button onclick="foo()"> 添加新元素 </button>
 
    <script>
        function foo() {
      
      
            let main_div = document.getElementById("mian_div")      
            let new_node = document.createElement("li")
            let textnode = document.createTextNode("time.geekbang")
            new_node.appendChild(textnode);
            document.getElementById("mian_div").appendChild(new_node);
        }
    </script>
</body>
</html>

对于上面这段代码,使用 Performance 工具来记录添加元素的过程,如下图所示:

image-20230409154711937

执行 JavaScript 添加元素是在一个任务中执行的,重新计算样式布局是在另外一个任务中执行,这就是正常情况下的布局操作。

所谓强制同步布局,是指 JavaScript 强制将计算样式和布局操作提前到当前的任务中

function foo() {
    let main_div = document.getElementById("mian_div")
    let new_node = document.createElement("li")
    let textnode = document.createTextNode("time.geekbang")
    new_node.appendChild(textnode);
    document.getElementById("mian_div").appendChild(new_node);
    // 由于要获取到 offsetHeight,
    // 但是此时的 offsetHeight 还是老的数据,
    // 所以需要立即执行布局操作
    console.log(main_div.offsetHeight)
}

将新的元素添加到 DOM 之后,调用了main_div.offsetHeight来获取新 main_div 的高度信息。如果要获取到 main_div 的高度,就需要重新布局,所以这里在获取到 main_div 的高度之前,JavaScript 还需要强制让渲染引擎默认执行一次布局操作。这个操作称为强制同步布局

同样,可以看下面通过 Performance 记录的任务状态:

image-20230409154951708

计算样式和布局都是在当前脚本执行过程中触发的,这就是强制同步布局。

为了避免强制同步布局,可以调整策略,在修改 DOM 之前查询相关值。代码如下所示:

function foo() {
    
    
    let main_div = document.getElementById("mian_div")
    // 为了避免强制同步布局,在修改 DOM 之前查询相关值
    console.log(main_div.offsetHeight)
    let new_node = document.createElement("li")
    let textnode = document.createTextNode("time.geekbang")
    new_node.appendChild(textnode);
    document.getElementById("mian_div").appendChild(new_node);
    
}
  • 避免布局抖动

比强制同步布局更坏的情况,那就是布局抖动。所谓布局抖动,是指在一次 JavaScript 执行过程中,多次执行强制布局和抖动操作。

function foo() {
    
    
    let time_li = document.getElementById("time_li")
    for (let i = 0; i < 100; i++) {
    
    
        let main_div = document.getElementById("mian_div")
        let new_node = document.createElement("li")
        let textnode = document.createTextNode("time.geekbang")
        new_node.appendChild(textnode);
        new_node.offsetHeight = time_li.offsetHeight;
        document.getElementById("mian_div").appendChild(new_node);
    }
}

在一个 for 循环语句里面不断读取属性值,每次读取属性值之前都要进行计算样式和布局。执行代码之后,使用 Performance 记录的状态如下所示:

image-20230409155139553

在 foo 函数内部重复执行计算样式和布局,这会大大影响当前函数的执行效率。这种情况的避免方式和强制同步布局一样,都是尽量不要在修改 DOM 结构时再去查询一些相关值。

  • 合理利用 CSS 合成动画

合成动画是直接在合成线程上执行的,这和在主线程上执行的布局、绘制等操作不同,如果主线程被 JavaScript 或者一些布局任务占用,CSS 动画依然能继续执行。所以要尽量利用好 CSS 合成动画,如果能让 CSS 处理动画,就尽量交给 CSS 来操作。

另外,如果能提前知道对某个元素执行动画操作,那就最好将其标记为 will-change,这是告诉渲染引擎需要将该元素单独生成一个图层。

  • 避免频繁的垃圾回收

JavaScript 使用了自动垃圾回收机制,如果在一些函数中频繁创建临时对象,那么垃圾回收器也会频繁地去执行垃圾回收策略。这样当垃圾回收操作发生时,就会占用主线程,从而影响到其他任务的执行,严重的话还会让用户产生掉帧、不流畅的感觉。

所以要尽量避免产生那些临时垃圾数据。尽可能优化储存结构,尽可能避免小颗粒对象的产生。

虚拟DOM

DOM 的缺陷

通过 JavaScript 操纵 DOM 是会影响到整个渲染流水线的。另外,DOM 还提供了一组 JavaScript 接口用来遍历或者修改节点,这套接口包含了 getElementById、removeChild、appendChild 等方法。

可以调用document.body.appendChild(node)往 body 节点上添加一个元素,调用该 API 之后会引发一系列的连锁反应。首先渲染引擎会将 node 节点添加到 body 节点之上,然后触发样式计算、布局、绘制、栅格化、合成等任务,这一过程称为重排。除了重排之外,还有可能引起重绘或者合成操作,形象地理解就是“牵一发而动全身”。另外,对于 DOM 的不当操作还有可能引发强制同步布局布局抖动的问题,这些操作都会大大降低渲染效率。因此,对于 DOM 的操作时刻都需要非常小心谨慎。

对于一些复杂的页面或者目前使用非常多的单页应用来说,其 DOM 结构是非常复杂的,而且还需要不断地去修改 DOM 树,每次操作 DOM 渲染引擎都需要进行重排、重绘或者合成等操作,因为 DOM 结构复杂,所生成的页面结构也会很复杂,对于这些复杂的页面,执行一次重排或者重绘操作都是非常耗时的,这就带来了真正的性能问题。

所以需要有一种方式来减少 JavaScript 对 DOM 的操作,这时候虚拟 DOM 就上场了

什么是虚拟 DOM

虚拟 DOM 到底要解决哪些事情。

  • 将页面改变的内容应用到虚拟 DOM 上,而不是直接应用到 DOM 上。
  • 变化被应用到虚拟 DOM 上时,虚拟 DOM 并不急着去渲染页面,而仅仅是调整虚拟 DOM 的内部状态,这样操作虚拟 DOM 的代价就变得非常轻了。
  • 在虚拟 DOM 收集到足够的改变时,再把这些变化一次性应用到真实的 DOM 上。

image-20230409160201990

该图是结合 React 流程画的一张虚拟 DOM 执行流程图,结合这张图来分析下虚拟 DOM 到底怎么运行的。

  • 创建阶段。首先依据 JSX 和基础数据创建出来虚拟 DOM,它反映了真实的 DOM 树的结构。然后由虚拟 DOM 树创建出真实 DOM 树,真实的 DOM 树生成完后,再触发渲染流水线往屏幕输出页面。
  • 更新阶段。如果数据发生了改变,那么就需要根据新的数据创建一个新的虚拟 DOM 树;然后 React 比较两个树,找出变化的地方,并把变化的地方一次性更新到真实的 DOM 树上;最后渲染引擎更新渲染流水线,并生成新的页面。

最新的React Fiber 更新机制。通过上图知道,当有数据更新时,React 会生成一个新的虚拟 DOM,然后拿新的虚拟 DOM 和之前的虚拟 DOM 进行比较,这个过程会找出变化的节点,然后再将变化的节点应用到 DOM 上。

这里重点关注下比较过程,最开始的时候,比较两个虚拟 DOM 的过程是在一个递归函数里执行的,其核心算法是 reconciliation。通常情况下,这个比较过程执行得很快,不过当虚拟 DOM 比较复杂的时候,执行比较函数就有可能占据主线程比较久的时间,这样就会导致其他任务的等待,造成页面卡顿。为了解决这个问题,React 团队重写了 reconciliation 算法,新的算法称为 Fiber reconciler,之前老的算法称为 Stack reconciler。

协程的另外一个称呼就是 Fiber,所以在这里把 Fiber 和协程关联起来,那么所谓的 Fiber reconciler ,就是在执行算法的过程中出让主线程,这样就解决了 Stack reconciler 函数占用时间过久的问题。

双缓存

在开发游戏或者处理其他图像的过程中,屏幕从前缓冲区读取数据然后显示。但是很多图形操作都很复杂且需要大量的运算,比如一幅完整的画面,可能需要计算多次才能完成,如果每次计算完一部分图像,就将其写入缓冲区,那么就会造成一个后果,那就是在显示一个稍微复杂点的图像的过程中,你看到的页面效果可能是一部分一部分地显示出来,因此在刷新页面的过程中,会让用户感受到界面的闪烁。

使用双缓存,可以先将计算的中间结果存放在另一个缓冲区中,等全部的计算结束,该缓冲区已经存储了完整的图形之后,再将该缓冲区的图形数据一次性复制到显示缓冲区,这样就使得整个图像的输出非常稳定。

在这里,可以把虚拟 DOM 看成是 DOM 的一个 buffer,和图形显示一样,它会在完成一次完整的操作之后,再把结果应用到 DOM 上,这样就能减少一些不必要的更新,同时还能保证 DOM 的稳定输出。

MVC 模式

image-20230409160907844

MVC 的整体结构比较简单,由模型、视图和控制器组成,其核心思想就是将数据和视图分离,也就是说视图和模型之间是不允许直接通信的,它们之间的通信都是通过控制器来完成的。通常情况下的通信路径是视图发生了改变,然后通知控制器,控制器再根据情况判断是否需要更新模型数据。当然还可以根据不同的通信路径和控制器不同的实现方式,基于 MVC 又能衍生出很多其他的模式,如 MVP、MVVM 等,不过万变不离其宗,它们的基础骨架都是基于 MVC 而来。

所以在分析基于 React 或者 Vue 这些前端框架时,需要先重点把握大的 MVC 骨架结构,然后再重点查看通信方式和控制器的具体实现方式,这样就能从架构的视角来理解这些前端框架了。比如在分析 React 项目时,可以把 React 的部分看成是一个 MVC 中的视图,在项目中结合 Redux 就可以构建一个 MVC 的模型结构,如下图所示:

image-20230409161041277

在该图中,可以把虚拟 DOM 看成是 MVC 的视图部分,其控制器和模型都是由 Redux 提供的。其具体实现过程如下:

  • 图中的控制器是用来监控 DOM 的变化,一旦 DOM 发生变化,控制器便会通知模型,让其更新数据;
  • 模型数据更新好之后,控制器会通知视图,告诉它模型的数据发生了变化;
  • 视图接收到更新消息之后,会根据模型所提供的数据来生成新的虚拟 DOM;
  • 新的虚拟 DOM 生成好之后,就需要与之前的虚拟 DOM 进行比较,找出变化的节点;
  • 比较出变化的节点之后,React 将变化的虚拟节点应用到 DOM 上,这样就会触发 DOM 节点的更新;
  • DOM 节点的变化又会触发后续一系列渲染流水线的变化,从而实现页面的更新。

渐进式网页应用(PWA)

浏览器的三大进化路线:

  • 第一个是应用程序 Web 化;
  • 第二个是 Web 应用移动化;
  • 第三个是 Web 操作系统化;

PWA,全称是 Progressive Web App,翻译过来就是渐进式网页应用。根据字面意思,它就是“渐进式 +Web 应用”。对于 Web 应用很好理解了,就是目前普通的 Web 页面,所以 PWA 所支持的首先是一个 Web 页面。至于“渐进式”,就需要从下面两个方面来理解。

  • 站在 Web 应用开发者来说,PWA 提供了一个渐进式的过渡方案,让普通站点逐步过渡到 Web 应用。采取渐进式可以降低站点改造的代价,使得站点逐步支持各项新技术,而不是一步到位。
  • 站在技术角度来说,PWA 技术也是一个渐进式的演化过程,在技术层面会一点点演进,比如逐渐提供更好的设备特性支持,不断优化更加流畅的动画效果,不断让页面的加载速度变得更快,不断实现本地应用的特性。

从这两点可以看出来,PWA 采取的是非常一个缓和的渐进式策略,不再像以前那样激进,动不动就是取代本地 App、取代小程序。与之相反,而是要充分发挥 Web 的优势,渐进式地缩短和本地应用或者小程序的距离。

给 PWA 的定义就是:它是一套理念,渐进式增强 Web 的优势,并通过技术手段渐进式缩短和本地应用或者小程序的距离。基于这套理念之下的技术都可以归类到 PWA。

Web 应用 VS 本地应用

那相对于本地应用,Web 页面到底缺少了什么?

  • 首先,Web 应用缺少离线使用能力,在离线或者在弱网环境下基本上是无法使用的。而用户需要的是沉浸式的体验,在离线或者弱网环境下能够流畅地使用是用户对一个应用的基本要求。
  • 其次,Web 应用还缺少了消息推送的能力,因为作为一个 App 厂商,需要有将消息送达到应用的能力。
  • 最后,Web 应用缺少一级入口,也就是将 Web 应用安装到桌面,在需要的时候直接从桌面打开 Web 应用,而不是每次都需要通过浏览器来打开。

针对以上 Web 缺陷,PWA 提出了两种解决方案:通过引入 Service Worker 来试着解决离线存储和消息推送的问题,通过引入 manifest.json 来解决一级入口的问题

什么是 Service Worker

Service Worker 的概念,它的主要思想是在页面和网络之间增加一个拦截器,用来缓存和拦截请求。整体结构如下图所示:

image-20230409161827066

在没有安装 Service Worker 之前,WebApp 都是直接通过网络模块来请求资源的。安装了 Service Worker 模块之后,WebApp 请求资源时,会先通过 Service Worker,让它判断是返回 Service Worker 缓存的资源还是重新去网络请求资源。一切的控制权都交由 Service Worker 来处理。

Service Worker 的设计思路

架构

JavaScript 和页面渲染流水线的任务都是在页面主线程上执行的,如果一段 JavaScript 执行时间过久,那么就会阻塞主线程,使得渲染一帧的时间变长,从而让用户产生卡顿的感觉,这对用户来说体验是非常不好的。

为了避免 JavaScript 过多占用页面主线程时长的情况,浏览器实现了 Web Worker 的功能。Web Worker 的目的是让 JavaScript 能够运行在页面主线程之外,不过由于 Web Worker 中是没有当前页面的 DOM 环境的,所以在 Web Worker 中只能执行一些和 DOM 无关的 JavaScript 脚本,并通过 postMessage 方法将执行的结果返回给主线程。所以说在 Chrome 中, Web Worker 其实就是在渲染进程中开启的一个新线程,它的生命周期是和页面关联的。

“让其运行在主线程之外”就是 Service Worker 来自 Web Worker 的一个核心思想。不过 Web Worker 是临时的,每次 JavaScript 脚本执行完成之后都会退出,执行结果也不能保存下来,如果下次还有同样的操作,就还得重新来一遍。所以 Service Worker 需要在 Web Worker 的基础之上加上储存功能。

另外,由于 Service Worker 还需要会为多个页面提供服务,所以还不能把 Service Worker 和单个页面绑定起来。在目前的 Chrome 架构中,Service Worker 是运行在浏览器进程中的,因为浏览器进程生命周期是最长的,所以在浏览器的生命周期内,能够为所有的页面提供服务。

消息推送

消息推送也是基于 Service Worker 来实现的。因为消息推送时,浏览器页面也许并没有启动,这时就需要 Service Worker 来接收服务器推送的消息,并将消息通过一定方式展示给用户。

安全

关于安全,其中最为核心的一条就是 HTTP。我们知道,HTTP 采用的是明文传输信息,存在被窃听、被篡改和被劫持的风险,在项目中使用 HTTP 来传输数据无疑是“裸奔”。所以在设计之初,就考虑对 Service Worker 采用 HTTPS 协议,因为采用 HTTPS 的通信数据都是经过加密的,即便拦截了数据,也无法破解数据内容,而且 HTTPS 还有校验机制,通信双方很容易知道数据是否被篡改。

WebComponent 组件化开发

CSS 的全局属性会阻碍组件化,DOM 也是阻碍组件化的一个因素,因为在页面中只有一个 DOM,任何地方都可以直接读取和修改 DOM。所以使用 JavaScript 来实现组件化是没有问题的,但是 JavaScript 一旦遇上 CSS 和 DOM,那么就相当难办了。

WebComponent 给出了解决思路,它提供了对局部视图封装能力,可以让 DOM、CSSOM 和 JavaScript 运行在局部环境中,这样就使得局部的 CSS 和 DOM 不会影响到全局。

WebComponent 是一套技术的组合,具体涉及到了Custom elements(自定义元素)、Shadow DOM(影子 DOM)**和**HTML templates(HTML 模板),详细内容可以参考 MDN 上的相关链接

<!DOCTYPE html>
<html>
 
 
<body>
    <!--
            一:定义模板
            二:定义内部 CSS 样式
            三:定义 JavaScript 行为
    -->
    <template id="geekbang-t">
        <style>
            p {
      
      
                background-color: brown;
                color: cornsilk
            }
 
 
            div {
      
      
                width: 200px;
                background-color: bisque;
                border: 3px solid chocolate;
                border-radius: 10px;
            }
        </style>
        <div>
            <p>time.geekbang.org</p>
            <p>time1.geekbang.org</p>
        </div>
        <script>
            function foo() {
      
      
                console.log('inner log')
            }
        </script>
    </template>
    <script>
        class GeekBang extends HTMLElement {
      
      
            constructor() {
      
      
                super()
                // 获取组件模板
                const content = document.querySelector('#geekbang-t').content
                // 创建影子 DOM 节点
                const shadowDOM = this.attachShadow({
      
       mode: 'open' })
                // 将模板添加到影子 DOM 上
                shadowDOM.appendChild(content.cloneNode(true))
            }
        }
        customElements.define('geek-bang', GeekBang)
    </script>
 
 
    <geek-bang></geek-bang>
    <div>
        <p>time.geekbang.org</p>
        <p>time1.geekbang.org</p>
    </div>
    <geek-bang></geek-bang>
</body>
 
 
</html>

要使用 WebComponent,通常要实现下面三个步骤。

首先,使用 template 属性来创建模板。利用 DOM 可以查找到模板的内容,但是模板元素是不会被渲染到页面上的,也就是说 DOM 树中的 template 节点不会出现在布局树中,所以可以使用 template 来自定义一些基础的元素结构,这些基础的元素结构是可以被重复使用的。一般模板定义好之后,我们还需要在模板的内部定义样式信息。

其次,需要创建一个 GeekBang 的类。在该类的构造函数中要完成三件事:

  1. 查找模板内容;
  2. 创建影子 DOM;
  3. 再将模板添加到影子 DOM 上。

上面最难理解的是影子 DOM,其实影子 DOM 的作用是将模板中的内容与全局 DOM 和 CSS 进行隔离,这样可以实现元素和样式的私有化了。可以把影子 DOM 看成是一个作用域,其内部的样式和元素是不会影响到全局的样式和元素的,而在全局环境下,要访问影子 DOM 内部的样式或者元素也是需要通过约定好的接口的。

通过影子 DOM,就实现了 CSS 和元素的封装,在创建好封装影子 DOM 的类之后,可以使用 customElements.define 来自定义元素了

可以像正常使用 HTML 元素一样使用该元素,如上述代码中的<geek-bang></geek-bang>

上述代码最终渲染出来的页面,如下图所示:

image-20230409163115318

影子 DOM 内部的样式是不会影响到全局 CSSOM 的。另外,使用 DOM 接口也是无法直接查询到影子 DOM 内部元素的,比如可以使用document.getElementsByTagName('div')来查找所有 div 元素,这时候会发现影子 DOM 内部的元素都是无法查找的,因为要想查找影子 DOM 内部的元素需要专门的接口,所以通过这种方式又将影子内部的 DOM 和外部的 DOM 进行了隔离。

通过影子 DOM 可以隔离 CSS 和 DOM,不过需要注意一点,影子 DOM 的 JavaScript 脚本是不会被隔离的,比如在影子 DOM 定义的 JavaScript 函数依然可以被外部访问,这是因为 JavaScript 语言本身已经可以很好地实现组件化了。

影子 DOM 的作用主要有以下两点:

  1. 影子 DOM 中的元素对于整个网页是不可见的;
  2. 影子 DOM 的 CSS 不会影响到整个网页的 CSSOM,影子 DOM 内部的 CSS 只对内部的元素起作用。

浏览器如何实现影子 DOM

image-20230409163357721

该图是上面那段示例代码对应的 DOM 结构图,从图中可以看出,使用了两次 geek-bang 属性,那么就会生成两个影子 DOM,并且每个影子 DOM 都有一个 shadow root 的根节点,可以将要展示的样式或者元素添加到影子 DOM 的根节点上,每个影子 DOM 你都可以看成是一个独立的 DOM,它有自己的样式、自己的属性,内部样式不会影响到外部样式,外部样式也不会影响到内部样式。

浏览器为了实现影子 DOM 的特性,在代码内部做了大量的条件判断,比如当通过 DOM 接口去查找元素时,渲染引擎会去判断 geek-bang 属性下面的 shadow-root 元素是否是影子 DOM,如果是影子 DOM,那么就直接跳过 shadow-root 元素的查询操作。所以这样通过 DOM API 就无法直接查询到影子 DOM 的内部元素了。

另外,当生成布局树的时候,渲染引擎也会判断 geek-bang 属性下面的 shadow-root 元素是否是影子 DOM,如果是,那么在影子 DOM 内部元素的节点选择 CSS 样式的时候,会直接使用影子 DOM 内部的 CSS 属性。所以这样最终渲染出来的效果就是影子 DOM 内部定义的样式。

M 进行了隔离。

通过影子 DOM 可以隔离 CSS 和 DOM,不过需要注意一点,影子 DOM 的 JavaScript 脚本是不会被隔离的,比如在影子 DOM 定义的 JavaScript 函数依然可以被外部访问,这是因为 JavaScript 语言本身已经可以很好地实现组件化了。

影子 DOM 的作用主要有以下两点:

  1. 影子 DOM 中的元素对于整个网页是不可见的;
  2. 影子 DOM 的 CSS 不会影响到整个网页的 CSSOM,影子 DOM 内部的 CSS 只对内部的元素起作用。

浏览器如何实现影子 DOM

[外链图片转存中…(img-v0Z6lFai-1683724058047)]

该图是上面那段示例代码对应的 DOM 结构图,从图中可以看出,使用了两次 geek-bang 属性,那么就会生成两个影子 DOM,并且每个影子 DOM 都有一个 shadow root 的根节点,可以将要展示的样式或者元素添加到影子 DOM 的根节点上,每个影子 DOM 你都可以看成是一个独立的 DOM,它有自己的样式、自己的属性,内部样式不会影响到外部样式,外部样式也不会影响到内部样式。

浏览器为了实现影子 DOM 的特性,在代码内部做了大量的条件判断,比如当通过 DOM 接口去查找元素时,渲染引擎会去判断 geek-bang 属性下面的 shadow-root 元素是否是影子 DOM,如果是影子 DOM,那么就直接跳过 shadow-root 元素的查询操作。所以这样通过 DOM API 就无法直接查询到影子 DOM 的内部元素了。

另外,当生成布局树的时候,渲染引擎也会判断 geek-bang 属性下面的 shadow-root 元素是否是影子 DOM,如果是,那么在影子 DOM 内部元素的节点选择 CSS 样式的时候,会直接使用影子 DOM 内部的 CSS 属性。所以这样最终渲染出来的效果就是影子 DOM 内部定义的样式。

猜你喜欢

转载自blog.csdn.net/weixin_46488959/article/details/130609956