python:基于YOLO框架和遥感图像的目标检测

作者:CSDN @ _养乐多_

本文将介绍如何通过YOLO框架和遥感图像进行目标检测的代码。



一、数据集下载与格式转换

下载数据集之后,统一转换为YOLO格式。

1.1 NWPU VHR-10(73.1 MB)

下载链接:https://opendatalab.com/OpenDataLab/NWPU_VHR-10

标注信息

class_id_to_name = {
    
    
    0: "飞机",
    1: "船只",
    2: "储油罐",
    3: "棒球场",
    4: "网球场",
    5: "篮球场",
    6: "跑道场地",
    7: "港口",
    8: "桥梁",
    9: "车辆"
}

NWPU VHR-10 数据集转换为YOLO格式,参考博客《python:将 NWPU_VHR-10 遥感目标检测数据集转换成 YOLO 格式》。并配置data.yaml文件。

1.2 DIOR(7.06 GB)

下载链接:https://opendatalab.com/OpenDataLab/DIOR

DIOR数据集转换为YOLO格式,参考博客《YOLO:VOC格式数据集转换为YOLO数据集格式》,并配置data.yaml文件。

1.3 配置data.yaml

data.yaml 文件中,写入以下几行代码。保存。

修改训练图片路径和验证路径。

train: E:\\DataSet\\NWPU-YOLO\\train
val: E:\\DataSet\\NWPU-YOLO\\val
nc: 10
#names: ['飞机', '船只', '储油罐', '棒球场', '网球场', '篮球场', '跑道场地', '港口', '桥梁', '车辆']
names: ['Airplane', 'Ship', 'Oil Tank', 'Baseball Field', 'Tennis Court', 'Basketball Court', 'Runway', 'Harbor', 'Bridge', 'Vehicle']

二、训练

from ultralytics import YOLO
from swanlab.integration.ultralytics import add_swanlab_callback

if __name__ == '__main__':
    model = YOLO("yolov8n.pt")
    add_swanlab_callback(model, project='training_project')
    model.train(data="D:/data.yaml", epochs=10, workers=0) 
    metrics = model.val()
    # model.predict("../测试图片/00011.jpg", imgsz=640, save=True, device=0)
    path = model.export(format="onnx")

三、训练结果

训练100次。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

标注数据1:

在这里插入图片描述

预测结果1:

在这里插入图片描述

标注数据2:

请添加图片描述

预测数据2:

请添加图片描述

猜你喜欢

转载自blog.csdn.net/qq_35591253/article/details/140950200