一、项目背景
随着城市化进程的加速和交通网络的不断扩展,道路维护成为城市管理中的一个重要环节。道路缺陷(如裂缝、坑洞、路面破损等)不仅影响行车安全,还会增加车辆的磨损和维修成本。传统的道路缺陷检测方法主要依赖人工巡检,这种方法效率低下且容易遗漏。因此,利用先进的计算机视觉技术进行自动化的道路缺陷检测成为了研究热点。
YOLO (You Only Look Once) 是一种基于深度学习的目标检测算法,以其快速而准确的特点在多个领域得到广泛应用。YOLO11是YOLO系列的一个改进版本,它在保持高效性的同时,进一步提升了检测精度。本项目旨在开发一个基于YOLO11的道路缺陷检测系统,以实现对道路缺陷的自动化检测,提高检测效率和准确性。
二、运行演示
为了更好地展示YOLO11道路缺陷检测系统的实际效果,我们录制了一段视频演示。在视频中,我们可以看到该系统如何处理一段包含多种道路缺陷的视频片段,并实时标注出检测到的缺陷位置。