测量学:求导线各点坐标

题目:

已知如下条件,试求导线各点坐标:

\alpha_{AB}= 224^°20^′18^″

\beta_{0}= 301^°42^′30^″

x_{b} = 1647.76m

 y_{b} =1428.55m

1 89 30 06
2 81 43 20
3 98 16 30
B 90 29 54
12 163.35
23 120.75
3B

144.96

B1 119.50

答案:

\Sigma_{测}=\angle{1}+\angle{2}+\angle{3}=359^°59^′50^″

f_{\beta}=\Sigma_{测}-\Sigma_{理}=-10^″

\frac{f_{\beta}}{4}=-2.5^″

\angle{B^{'}}=\angle{B}+3^{"}=90^°29^′57^″

\angle{1^{'}}=\angle{1}+3^{"}=89^°30^′09^″

\angle2^{'}=\angle{2}+\angle{2}^{"}=81^°43^′22^″

\angle3^{'}=\angle{3}+\angle{2}^{"}=98^°16^′32^″

\alpha_{AB}=224^°20^′18^″

\alpha_{B1}=\alpha_{AB}-180^{\circ}+\beta_0=346^{\circ}2^{′}48{″}

\alpha_{12}=\alpha_{B1}-180^{\circ}+\angle1^{′}=255^{\circ}32^{′}57{″}

\alpha_{23}=\alpha_{12}-180^{\circ}+\angle2^{′}=157^{\circ}16^{′}19{″}

\alpha_{3B}=\alpha_{23}-180^{\circ}+\angle3^{′}=75^{\circ}32^{′}51{″}

\alpha_{B1}=\alpha_{3B}+180^{\circ}+\angle{B}^{′}=346^{\circ}2^{′}48{″}

\Delta{x}_{B1}=L_{B1}\cdot cos\alpha_{B1}=115.974

\Delta{x}_{12}=L_{12}\cdot cos\alpha_{12}=-40.764

\Delta{x}_{23}=L_{23}\cdot cos\alpha_{23}=-111.374

\Delta{x}_{3B}=L_{3B}\cdot cos\alpha_{3B}=36.179

\Delta{y}_{B1}=L_{B1}\cdot sin\alpha_{B1}=-28.815

\Delta{y}_{12}=L_{12}\cdot sin\alpha_{12}=-158.182

\Delta{y}_{23}=L_{23}\cdot sin\alpha_{23}=46.653

\Delta{y}_{3B}=L_{3B}\cdot sin\alpha_{3B}=140.373

f_x=\Sigma_{\Delta{}x}-0=0.015

f_y=\Sigma_{\Delta{}y}-0=0.029

D=548.56

\frac{\sqrt{f_{x}^{2}+f_{x}^{2}}}{\Sigma_{D}}=5.95\times10^{-5}<\frac{1}{2000}

V_{x_{B1}}=\frac{-f_x}{\Sigma_{D}}\cdot{D_{B1}}=-0.003

V_{y_{B1}}=\frac{-f_y}{\Sigma_{D}}\cdot{D_{B1}}=-0.006

V_{x_{12}}=\frac{-f_x}{\Sigma_{D}}\cdot{D_{12}}=-0.004

V_{y_{12}}=\frac{-f_y}{\Sigma_{D}}\cdot{D_{12}}=-0.009

V_{x_{23}}=\frac{-f_x}{\Sigma_{D}}\cdot{D_{23}}=-0.003

V_{y_{23}}=\frac{-f_y}{\Sigma_{D}}\cdot{D_{23}}=-0.006

V_{x_{3B}}=-f_{x}-V_{x_{B1}}-V_{x_{12}}-V_{x_{23}}=-0.005

V_{y_{3B}}=-f_{x}-V_{y_{B1}}-V_{y_{12}}-V_{y_{23}}=-0.008

\begin{cases} \Delta{x_{B1}^{'}}= \Delta{x_{B1}}+V_{x_{B1}}=115.971\\ \Delta{y_{B1}^{'}}= \Delta{y_{B1}}+V_{y_{B1}}=-28.821 \end{cases} \Rightarrow \begin{cases} x_{1}=\Delta{x_{B1}}^{'}+x_{B}=1763.731\\ y_{1}=\Delta{y_{B1}}^{'}+y_{B}=1399.729 \end{cases}

\begin{cases} \Delta{x_{12}^{'}}= \Delta{x_{12}}+V_{x_{12}}=-40.768\\ \Delta{y_{12}^{'}}= \Delta{y_{12}}+V_{y_{12}}=-158.191 \end{cases} \Rightarrow \begin{cases} x_{2}=\Delta{x_{12}}^{'}+x_{1}=1722.963\\ y_{2}=\Delta{y_{12}}^{'}+y_{1}=1241.538 \end{cases}

\begin{cases} \Delta{x_{23}^{'}}= \Delta{x_{23}}+V_{x_{23}}=-111.377\\ \Delta{y_{23}^{'}}= \Delta{y_{23}}+V_{y_{23}}=46.647 \end{cases} \Rightarrow \begin{cases} x_{3}=\Delta{x_{23}}^{'}+x_{2}=1611.586\\ y_{3}=\Delta{y_{23}}^{'}+y_{2}=1288.185 \end{cases}

\begin{cases} \Delta{x_{3B}^{'}}= \Delta{x_{3B}}+V_{x_{3B}}=36.174\\ \Delta{y_{3B}^{'}}= \Delta{y_{3B}}+V_{y_{3B}}=140.365 \end{cases} \Rightarrow \begin{cases} x_{B}=\Delta{x_{3B}}^{'}+x_{3}=1647.76\\ y_{B}=\Delta{y_{3B}}^{'}+y_{3}=1428.55 \end{cases}

猜你喜欢

转载自blog.csdn.net/m0_63309974/article/details/139814836
今日推荐