在人工智能快速发展的今天,AI、RAG、Agent 等术语频繁出现在我们的视野中。这些概念不仅影响着技术发展方向,更与我们的日常生活息息相关。然而,大多数解释要么过于技术性难以理解,要么过于简单无法真正掌握其精髓。
本文旨在用通俗易懂的语言,为读者梳理这些核心概念的来龙去脉。从 1956 年人工智能概念的提出,到当下 ChatGPT 等大语言模型的蓬勃发展,我们将沿着技术演进的时间线,帮助读者建立起对 AI 技术体系的整体认知框架,让这些看似深奥的概念变得触手可及。
通俗解释 AI、Transformer、RAG、Agent 等概念
一、什么是人工智能?
1956 年夏天,计算机科学家约翰·麦卡锡(John McCarthy)首次提出"人工智能"(AI
)这个概念。
人工智能(AI
)指的是:通过软件和硬件,来完成通常需要人类智能才能完成的任务。它的研究对象,就是在机器上模拟人类智能。
二、什么是机器学习?
早期,人工智能研究分成两个阵营。
第一个阵营是规则式(rule-based
)方法,又称专家系统(expert systems
),指的是人类写好一系列逻辑规则,来教导计算机如何思考。
可想而知,对于复杂的、大规模的现实问题,很难写出完备的、明确的规则。所以,这种方法的进展一直很有限。
第二个阵营就是机器学习(machine learning
),指的是没有预置的规则,只是把材料提供给计算机,让机器通过自我学习,自己发现规则,给出结果。
三、什么是神经网络?
神经网络(neural network
)是机器学习的一种主要形式。
神经网络就是在机器上模拟人脑的结构,构建类似生物神经元的计算网络来处理信息。
一个计算节点就是一个神经元,大量的计算节点组成网络,进行协同计算。
神经网络需要极大的算力,以及海量的训练材料。以前,这是难以做到的,所以 20 世纪 70 年代开始,就陷入了停滞,长期没有进展。
四、什么是深度学习?
深度学习(deep learning
)是神经网络的一种实现方法,在 20 世纪 80 年代由杰弗里·辛顿提出。它让神经网络研究重新复活。
深度学习是一种让多层神经元可以进行有效计算的方法,大大提高了神经网络的性能。"深度学习"这个名字,就是比喻多层神经元的自主学习过程。
多层神经元包括一个输入层和一个输出层,它们之间有很多中间层(又称隐藏层)。以前,计算机算力有限,只能支撑一两个中间层,深度学习使得我们可以构建成千上万个中间层的网络,具有极大的"深度"。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】