【机器学习】决定系数(R²:Coefficient of Determination)

决定系数R^{2},也称为 R 平方,是一种用于衡量回归模型预测效果的统计指标。它表示了模型解释目标变量总变异的程度,数值介于 0 和 1 之间,数值越接近 1 表明模型的解释力越强。

1. R^{2} 的定义和公式

R^{2} 的公式如下:

R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}

其中:

  • y_{i}​ 是真实值。
  • \hat{y_{i}} 是模型的预测值。
  • \bar{y} 是真实值的平均值。
  • \sum_{i=1}^n (y_i - \hat{y}_i)^2 是残差平方和 (Residual Sum of Squares, RSS)。
  • \sum_{i=1}^n (y_i - \bar{y})^2 是总平方和 (Total Sum of Squares, TSS)。

从公式可以看出,R^2 表示残差平方和占总平方和的比例。换句话说,R^2 越接近 1,表示模型的预测越接近真实值,模型解释越充分。

2.

猜你喜欢

转载自blog.csdn.net/IT_ORACLE/article/details/143624121
今日推荐