2024年中国研究生数学建模竞赛F题
X射线脉冲星光子到达时间建模
脉冲星(Pulsar)是高速自转的中子星,具有体积小、密度大的特征。脉冲星的高速自转会形成脉冲,而脉冲的周期其实就是脉冲星的自转周期 。在旋转过程中,脉冲星的磁场会形成强烈的电磁波,就像是“宇宙中的灯塔”,源源不断地、有规律地向外界发射电磁波。正是由于其自转的连续性和稳定性,脉冲星被认为是宇宙中最精确的时钟。脉冲星可以提供独立、稳定的空间参考基准和时间基准,为空间飞行提供导航信标。深空航天器导航以及时间基准的维持对于大国战略安全、航天技术发展、深空探测等都有重要意义。
由于X射线信号不能穿过地球大气,因此脉冲星的X射线波段观测只能在空间开展。2016年11月,我国发射了首颗X射线脉冲星导航试验卫星(X-ray Pulsar Navigation-1, XPNAV-1)对蟹状星云Crab脉冲星(PSR B0531+21)进行观测。Crab脉冲星位于超新星1054 AD(Anno Domini,此处指公元1054年)中心处,是恒星、超新星爆发后在蟹状星云中的残骸,自转周期约为33ms,在X射线波段具有很强的流量,辐射的X射线光子可被空间X射线探测器探测。
在观测过程中,由于卫星不断围绕地球转动,所以卫星轨道位置是实时变化的。在三维空间内描述轨道上的一点,需要六个轨道根数(或称轨道要素、轨道元素或轨道参数),包括:偏心率
、角动量
、轨道倾角
、真近点角
以及升交点赤经
和近地点幅角

(具体含义见附录)。为恢复脉冲星的周期性信号,需要将光子到达探测器的时刻转换到惯性系中某一参考点,如太阳系质心天球参考系(Barycentric Celestial Reference System,BCRS)中的坐标原点,即太阳系质心(Solar System Barycenter,SSB)。
脉冲星、卫星和太阳系质心的几何关系如图1所示,X射线脉冲星导航(XPNAV)原理与GPS的差分定位(DGPS)原理类似,均是基于到达时间测距。DGPS是通过比较地面监控站和接收机接收相同卫星的信号传播时间,从而确定接收机的位置和速度等参数。XPNAV则是通过比较脉冲到达太阳系质心和观察航天器(卫星等)接收相同脉冲星的脉冲到达时间实现航天器的定位导航,因此,需要分别计算脉冲到达航天器与太阳系质心的传播时间差,进而求解航天器相对于太阳系质心的位置。求这个时间差的公式也称为时间转化方程,然而,现有的时间转换模型并不令人满意。
图1 脉冲星、卫星和太