数字信号处理数学基础

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013220518/article/details/79674362
  1. 泰勒级数
    f ( x ) = f ( x 0 ) + f ( x 0 ) ( x x 0 ) + f ( x 0 ) 2 ! ( x x 0 ) 2 + + f ( n ) ( x 0 ) n ! ( x x 0 ) n + R n ( x ) f\left( x \right)=f\left( {{x}_{0}} \right)+{{f}^{'}}\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)+\frac{{{f}^{''}}\left( {{x}_{0}} \right)}{2!}\left( x-{{x}_{0}} \right)^2+\cdots +\frac{{{f}^{\left( n \right)}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}+{{R}_{n}}\left( x \right)
    其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x x 0 ) n + 1 {{R}_{n}}\left( x \right)=\frac{{{f}^{\left( n+1 \right)}}\left( \xi \right)}{\left( n+1 \right)!}{{\left( x-{{x}_{0}} \right)}^{n+1}}

  2. 复指数函数
    e z = lim n   ( 1 + z n ) n = lim n   i = 0 n 1 i ! z i {{e}^{z}}=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1+\frac{z}{n} \right)}^{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=0}^{n}{\frac{1}{i!}}{{z}^{i}}

  3. 欧拉公式
    e i x = cos x + i sin x {{e}^{ix}}=\cos x+i\sin x

  4. 卷积
    离散: y [ n ] = x [ n ] h [ n ] = k = x [ k ] h [ n k ] y\left[ n \right]=x\left[ n \right]*h\left[ n \right]=\sum\limits_{k=-\infty }^{\infty }{x\left[ k \right]h\left[ n-k \right]}
    连续: y ( t ) = x ( t ) h ( t ) = τ = x ( τ ) h ( t τ ) y\left( t \right)=x\left( t \right)*h\left( t \right)=\int\nolimits_{\tau =-\infty }^{\infty }{x\left( \tau \right)h\left( t-\tau \right)}

  5. 连续傅里叶变换

  6. 正变换: X ( w ) = F [ x ( t ) ] = x ( t ) e j w t d t X\left( w \right)={\mathcal{F}}\left[ x\left( t \right) \right]=\int_{-\infty }^{\infty }{x\left( t \right){{e}^{-jwt}}dt}

  7. 逆变换: x ( t ) = F 1 [ X ( w ) ] = 1 2 π X ( w ) e j w t d w x\left( t \right)={{\mathcal{F}}^{-1}}\left[ X\left( w \right) \right]=\frac{1}{2\pi }\int_{-\infty }^{\infty }{X\left( w \right){{e}^{jwt}}dw}

  8. 典型函数的傅里叶变换
    门函数:
    x ( t ) = { A , τ / 2 t τ / 2 0 , other  F X ( w ) = A τ Sa ( w τ / 2 ) = A τ sinc ( w τ / 2 π ) x\left( t \right)=\left\{ \begin{matrix}A,-\tau /2\le t\le \tau /2 \\0,\text{other } \\ \end{matrix} \right.\xrightarrow{\mathcal{F}}X\left( w \right)=A\tau\operatorname{Sa}\left( w\tau /2 \right)=A\tau\operatorname{sinc}\left( w\tau /2\pi \right)
    冲激函数:
    x ( t ) = δ ( t ) F X ( w ) = 1 x\left( t \right)=\delta \left( t \right)\xrightarrow{\mathcal{F}}X\left( w \right)=1
    周期函数:
    x ( t ) = sin ( w 1 t ) F X ( w ) = j π δ ( w + w 1 ) j π δ ( w w 1 ) x\left( t \right)=\sin \left( {{w}_{1}}t \right)\xrightarrow{\mathcal{F}}X\left( w \right)=j\pi \delta \left( w+{{w}_{1}} \right)-j\pi \delta \left( w-{{w}_{1}} \right)
    x ( t ) = cos ( w 1 t ) F X ( w ) = π δ ( w + w 1 ) + π δ ( w w 1 ) x\left( t \right)=\cos \left( {{w}_{1}}t \right)\xrightarrow{\mathcal{F}}X\left( w \right)=\pi \delta \left( w+{{w}_{1}} \right)+\pi \delta \left( w-{{w}_{1}} \right)

  9. 卷积定理
    时域: x 1 ( t ) x 2 ( t ) F X 1 ( w ) X 2 ( w ) {{x}_{1}}\left( t \right)*{{x}_{2}}\left( t \right)\xrightarrow{\mathcal{F}}{{X}_{1}}\left( w \right){{X}_{2}}\left( w \right)
    频域: x 1 ( t ) x 2 ( t ) F 1 2 π X 1 ( w ) X 2 ( w ) {{x}_{1}}\left( t \right){{x}_{2}}\left( t \right)\xrightarrow{\mathcal{F}}\frac{1}{2\pi }{{X}_{1}}\left( w \right)*{{X}_{2}}\left( w \right)

  10. 离散傅里叶变换

  11. 正变换: X [ k ] = n = 0 N 1 x [ n ] e j 2 π N k n , k = 0 , 1 ,   , N 1 X\left[ k \right]=\sum\limits_{n=0}^{N-1}{x\left[ n \right]{{e}^{-j\frac{2\pi }{N}kn}}},k=0,1,\cdots ,N-1

  12. 逆变换: x [ n ] = 1 N k = 0 N 1 X [ k ] e j 2 π N k n x\left[ n \right]=\frac{1}{N}\sum\limits_{k=0}^{N-1}{X\left[ k \right]{{e}^{j\frac{2\pi }{N}kn}}}

  13. 循环卷积: x 1 [ n ] x 2 [ n ] = m = 0 N 1 x 1 [ m ] x 2 [ n m ] , n = 0 , 1 ,   , N 1 {{x}_{1}}\left[ n \right]*{{x}_{2}}\left[ n \right]=\sum\limits_{m=0}^{N-1}{{{x}_{1}}\left[ m \right]{{x}_{2}}\left[ n-m \right]},n=0,1,\cdots ,N-1
    其中 n m n-m 的取值需要注意

  14. 卷积定理
    x 1 [ n ] x 2 [ n ] DFT X 1 [ k ] X 2 [ k ] {{x}_{1}}\left[ n \right]*{{x}_{2}}\left[ n \right]\overset{\text{DFT}}{\longleftrightarrow}{{X}_{1}}\left[ k \right]{{X}_{2}}\left[ k \right]

  15. 高斯分布
    p ( x ) = 1 2 π σ e ( x x ˉ ) 2 / 2 σ 2 p\left( x \right)=\frac{1}{\sqrt{2\pi \sigma }}{{e}^{-{{\left( x-\bar{x} \right)}^{2}}/2{{\sigma }^{2}}}}

  16. 复数求导
    a = 1 2 ( a I j a Q ) , a a = 1 , a a = 0 \frac{\partial }{{\partial a}} = \frac{1}{2}\left( {\frac{\partial }{{\partial {a_I}}} - j\frac{\partial }{{\partial {a_Q}}}} \right), \frac{{\partial a}}{{\partial a}} = 1,\frac{{\partial {a^*}}}{{\partial a}} = 0
    其中 a = a I + j a Q a = a_I + ja_Q

  17. 中心极限定理
    假设有n个独立同分布的随机变量 X i ( i = 1 , 2 ,   , n ) {X_i } (i=1,2,\cdots ,n) ,均值为 x ˉ \bar{x} ,方差为 σ 2 {\sigma }^{2} ,构建一个新的随机变量: Y = 1 n i = 1 n X i x ˉ σ Y=\frac{1}{\sqrt{n}}\sum\limits_{i=1}^{n}{\frac{{{X}_{i}}-\bar{x}}{\sigma }} ,则当 n n \to \infty 时, Y Y 服从标准正态分布,即 p Y ( x ) = 1 2 π e x 2 / 2 {{p}_{Y}}\left( x \right)=\frac{1}{\sqrt{2\pi }}{{e}^{-{{x}^{2}}/2}}

猜你喜欢

转载自blog.csdn.net/u013220518/article/details/79674362