筛法欧拉函数

欧拉定理

  欧拉定理是用来阐述素数模下,指数同余的性质。

     欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)

     例如φ(8)=4,因为与8互质且小于等于8的正整数有4个,它们是:1,3,5,7

    欧拉定理还有几个引理,具体如下:

    ①:如果n为某一个素数p,则φ(p)=p-1;

    ①很好证明:因为素数p的质因数只有1和它本身,p和p不为互质,所以φ(p)=p-1;

    ②:如果n为某一个素数p的幂次,那么φ(p^a)=(p-1)*p^(a-1);

    ②因为比p^a小的数有p^a-1个,那么有p^(a-1)-1个数能被p所整除(因为把1~p^a-1的p的倍数都筛去了)

       所以φ(p)=p^a-1-(p^(a-1)-1)=(p-1)*p^(a-1)

    ③:如果n为任意两个数a和b的积,那么φ(a*b)=φ(a)*φ(b)

    ③因为比a*b小的数有a*b-1个,条件是a与b互质

       那么可以知道,只有那些既满足a与其互质且既满足b与其互质的数满足条件。

       根据乘法原理,这样的数可以互相组合,那么就有φ(a)*φ(b)个

       所以可以得知φ(a*b)=φ(a)*φ(b) (注意条件必须满足a和b互质)

   ④:设n=(p1^a1)*(p2^a2)*……*(pk^ak) (为N的分解式)

         那么φ(n)=n*(1-1/p1)*(1-1/p2)*……*(1-1/pk)

   ④因为各个分解完的p1、p2、……pk均为素数,所以它们均为互质的

      每次再刨去它们本身,乘起来

      剩下的运用容斥原理,再根据引理②和引理③就可以得出

    欧拉定理:a^(φ(m))同余1(mod m) (a与m互质)

欧拉函数的线性筛法----------------------------------------

    大家都知道素数的线性筛法吧,欧拉函数也有线性筛法,可以在线性时间内求出1~N的所有φ

    有以下三条性质:

    

    ①:φ(p)=p-1

    ②:φ(p*i)=p*φ(i) (当p%i==0时)

    ③:φ(p*i)=(p-1)*φ(i) (当p%i!=0时)

那么筛法基本与素数筛相同。

代码

#include<iostream>
using namespace std;
int prime[200], phi[200];
bool p[200];
void getphi(int n)
{
    int cnt = 0;
    for (int i = 2; i <= n; i++)
    {
        if (!p[i])
        {
            prime[cnt++] = i;
            phi[i] = i - 1;//性质一
        }
        for (int j = 0; j < cnt; j++)
        {
            if (i*prime[j] > n)break;
            p[i*prime[j]] = true;
            if (i%prime[j] == 0) { phi[i*prime[j]] = phi[i] * prime[j]; break; }
            else phi[i*prime[j]] = phi[i] * (prime[j] - 1);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性 
        }
    }
}
int main()
{
    int n;
    cin >> n;
    phi[1] = 1;
    getphi(n);
    for (int i = 1; i <= n; i++)
        cout << phi[i] << " ";
}

参考:https://blog.csdn.net/update7/article/details/70943545?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-5.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-5.nonecase

猜你喜欢

转载自www.cnblogs.com/Jason66661010/p/12906822.html