考研高数常用公式汇总(上)

写在前面:

一、高等数学预备知识

1.函数奇偶性
(1) F ( x ) = f ( x ) − f ( − x ) F(x)=f(x)-f(-x) F(x)=f(x)f(x)必为奇函数, F ( x ) = f ( x ) + f ( − x ) F(x)=f(x)+f(-x) F(x)=f(x)+f(x)必为偶函数.
(2)导数与积分奇偶性
∫ a x f ( t ) d t \int_{a}^{x} f(t)dt axf(t)dt f ( x ) f(x) f(x) f ′ ( x ) {f}' (x) f(x)
偶函数 奇函数 偶函数
奇函数 偶函数 奇函数
∫ 0 T f ( x ) d x = 0 \int_{0}^{T} f(x)dx=0 0Tf(x)dx=0时,周期为T 周期为T 周期为T
(3)奇偶函数运算

奇 函 数 × 奇 函 数 = 偶 函 数 奇函数\times 奇函数 = 偶函数 ×=
奇 函 数 × 偶 函 数 = 奇 函 数 奇函数\times 偶函数 = 奇函数 ×=
偶 函 数 × 偶 函 数 = 偶 函 数 偶函数\times 偶函数 = 偶函数 ×=

奇 函 数 + 奇 函 数 = 奇 函 数 奇函数 + 奇函数 = 奇函数 +=
偶 函 数 + 偶 函 数 = 偶 函 数 偶函数 + 偶函数 = 偶函数 +=

2.三角函数相关公式

a r c t a n α + a r c c o t α = π 2 arctan\alpha+arccot\alpha =\frac{\pi}{2} arctanα+arccotα=2π

1 + t a n 2 α = s e c 2 α 1+tan^{2}\alpha =sec^{2}\alpha 1+tan2α=sec2α

1 + c o t 2 α = c s c 2 α 1+cot^{2}\alpha =csc^{2}\alpha 1+cot2α=csc2α

s i n 3 α = − 4 s i n 3 α + 3 s i n α sin3\alpha=-4sin^{3} \alpha+3sin\alpha sin3α=4sin3α+3sinα

c o s 3 α = 4 c o s 3 α − 3 c o s α cos3\alpha=4cos^{3} \alpha-3cos\alpha cos3α=4cos3α3cosα

s i n ( α ± β ) = s i n α c o s β ± c o s α s i n β sin(\alpha\pm\beta)=sin\alpha cos\beta\pm cos\alpha sin \beta sin(α±β)=sinαcosβ±cosαsinβ

c o s ( α ± β ) = c o s α c o s β ∓ s i n α s i n β cos(\alpha\pm\beta)=cos\alpha cos\beta \mp sin\alpha sin \beta cos(α±β)=cosαcosβsinαsinβ

t a n ( α ± β ) = t a n α ± t a n β 1 ∓ t a n α t a n β tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta } tan(α±β)=1tanαtanβtanα±tanβ

万能公式: u = t a n x 2 ⇒ s i n x = 2 u 1 + u 2 , c o s x = 1 − u 2 1 + u 2 u=tan\frac{x}{2} \Rightarrow sinx=\frac{2u}{1+u^{2} } ,cosx=\frac{1-u^{2}}{1+u^{2}} u=tan2xsinx=1+u22u,cosx=1+u21u2

3.数列、因式分解
(1)等比数列
等比数列 a 1 , a 1 r , a 1 r 2 , ⋯   , a 1 r n − 1 a_{1} ,a_{1}r,a_{1}r^{2} ,\cdots ,a_{1}r^{n-1} a1,a1r,a1r2,,a1rn1
通项 a n = a 1 r n − 1 a_{n}=a_{1}r^{n-1} an=a1rn1
前n项和 S n = a 1 ( 1 − r n ) 1 − r S_{n}=\frac{a_{1}(1-r^{n} ) }{1-r} Sn=1ra1(1rn) ( r ≠ 1 ) (r≠1) (r=1)
∣ r ∣ < 1 \mid r\mid < 1 r<1 lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty} a_{n} =0 limnan=0
S n = a 1 1 − r S_{n}=\frac{a_{1} }{1-r} Sn=1ra1 S n = 首 项 1 − 公 比 S_{n}=\frac{首项 }{1-公比} Sn=1
(2)数列绝对值性质

lim ⁡ n → ∞ a n = A ⇒ lim ⁡ n → ∞ ∣ a n ∣ = ∣ A ∣ \lim_{n \to \infty} a_{n} =A\Rightarrow \lim_{n \to \infty} \mid a_{n}\mid =\mid A \mid limnan=Alimnan=A

lim ⁡ n → ∞ a n = 0 ⇔ lim ⁡ n → ∞ ∣ a n ∣ = 0 \lim_{n \to \infty} a_{n} =0\Leftrightarrow \lim_{n \to \infty} \mid a_{n}\mid =0 limnan=0limnan=0

(3)3次幂的因式分解

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^{3} =a^{3} +3a^{2} b +3ab^{2}+ b^{3} (a+b)3=a3+3a2b+3ab2+b3

( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 (a-b)^{3} =a^{3} -3a^{2} b +3ab^{2}- b^{3} (ab)3=a33a2b+3ab2b3

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^{3}-b^{3} =(a-b)(a^{2} +ab+b^{2}) a3b3=(ab)(a2+ab+b2)

4.常用不等式
(1)基本不等式

a b ≤ a + b 2 ≤ a 2 + b 2 2 \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^{2}+b^{2} }{2} } ab 2a+b2a2+b2

∣ a b ∣ ≤ a 2 + b 2 2 \mid ab\mid \le \frac{a^{2}+b^{2} }{2} ab2a2+b2

∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \mid \int_{a}^{b} f(x) dx\mid \le \int_{a}^{b} \mid f(x)\mid dx abf(x)dxabf(x)dx

(2) x → 0 + x\to 0^{+} x0+邻域的不等式

s i n x < x < t a n x sinx< x <tanx sinx<x<tanx

a r c t a n x < x < a r c s i n x arctanx< x <arcsinx arctanx<x<arcsinx

e x ≥ x + 1 e^{x} \ge x+1 exx+1

ln ⁡ x ≤ x − 1 \ln{x} \le x-1 lnxx1

ln ⁡ ( x + 1 ) ≤ x \ln{(x+1)} \le x ln(x+1)x

二、极限

1.常用泰勒公式 ( x → 0 ) (x\to0) (x0)

s i n x = x − x 3 3 ! + o ( x 3 ) sinx=x-\frac{x^{3} }{3!} +o(x^{3}) sinx=x3!x3+o(x3)

a r c s i n x = x + x 3 3 ! + o ( x 3 ) arcsinx=x+\frac{x^{3} }{3!} +o(x^{3}) arcsinx=x+3!x3+o(x3)

c o s x = 1 − x 2 2 ! + x 4 4 ! + o ( x 3 ) cosx=1-\frac{x^{2} }{2!}+\frac{x^{4} }{4!}+o(x^{3}) cosx=12!x2+4!x4+o(x3)

t a n x = x + x 3 3 + o ( x 3 ) tanx=x+\frac{x^{3} }{3} +o(x^{3}) tanx=x+3x3+o(x3)

a r c t a n x = x − x 3 3 + o ( x 3 ) arctanx=x-\frac{x^{3} }{3} +o(x^{3}) arctanx=x3x3+o(x3)

l n ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) ln(1+x)=x-\frac{x^{2} }{2}+\frac{x^{3}}{3}+o(x^{3}) ln(1+x)=x2x2+3x3+o(x3)

e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^{x} =1+x+\frac{x^{2} }{2!}+\frac{x^{3}}{3!}+o(x^{3}) ex=1+x+2!x2+3!x3+o(x3)

a x = 1 + x l n a + l n 2 a 2 ! x 2 + l n 3 a 3 ! x 3 + o ( x 3 ) a^{x} =1+xlna+\frac{ln^2a}{2!}x^{2}+\frac{ln^3a}{3!}x^{3}+o(x^{3}) ax=1+xlna+2!ln2ax2+3!ln3ax3+o(x3)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha - 1)}{2!} x^{2} +o(x^{2}) (1+x)α=1+αx+2!α(α1)x2+o(x2)

2.无穷小定义
α ( x ) \alpha (x) α(x) β ( x ) \beta (x) β(x) 定义
高阶无穷小 lim ⁡ α ( x ) β ( x ) = 0 \lim \frac{\alpha (x)}{\beta (x)} =0 limβ(x)α(x)=0
低阶无穷小 lim ⁡ α ( x ) β ( x ) = ∞ \lim \frac{\alpha (x)}{\beta (x)} =\infty limβ(x)α(x)=
同阶无穷小 lim ⁡ α ( x ) β ( x ) = c ≠ 0 \lim \frac{\alpha (x)}{\beta (x)} =c\ne 0 limβ(x)α(x)=c=0
等价无穷小 lim ⁡ α ( x ) β ( x ) = 1 \lim \frac{\alpha (x)}{\beta (x)} =1 limβ(x)α(x)=1
k阶无穷小 lim ⁡ α ( x ) [ β ( x ) ] k = c ≠ 0 \lim \frac{\alpha (x)}{[\beta (x)]^k} =c\ne 0 lim[β(x)]kα(x)=c=0
3.常用等价无穷小 ( x → 0 ) (x\to0) (x0)

l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)x

e x − 1 ∼ x e^x-1\sim x ex1x

a x − 1 ∼ x l n a a^x-1\sim xlna ax1xlna

1 − c o s x ∼ 1 2 x 2 1-cosx \sim \frac{1}{2}x^2 1cosx21x2

( 1 + x ) α − 1 ∼ α x (1+x)^\alpha-1 \sim \alpha x (1+x)α1αx

x x + a ∼ x \frac{x}{x+a} \sim x x+axx

4.常用极限运算

lim ⁡ x → 0 + x α l n x = 0 \lim_{x \to 0^+} x^\alpha lnx=0 limx0+xαlnx=0

lim ⁡ x → ∞ x x + a = 1 \lim_{x \to \infty }\frac{x}{x+a}= 1 limxx+ax=1

lim ⁡ x → ∞ x α c x = 0 \lim_{x \to \infty }\frac{x^\alpha}{c^x} =0 limxcxxα=0

5.几种左右极限不同的例子
极限 结果
lim ⁡ x → + ∞ e x \lim_{x \to +\infty} e^x limx+ex + ∞ +\infty +
lim ⁡ x → − ∞ e x \lim_{x \to -\infty} e^x limxex 0 0 0
lim ⁡ x → 0 + s i n x ∣ x ∣ \lim_{x \to 0^+}\frac{sinx}{\mid x \mid} limx0+xsinx 1 1 1
lim ⁡ x → 0 − s i n x ∣ x ∣ \lim_{x \to 0^-}\frac{sinx}{\mid x \mid} limx0xsinx − 1 -1 1
lim ⁡ x → + ∞ a r c t a n x \lim_{x \to +\infty} arctanx limx+arctanx π 2 \frac{\pi}{2} 2π
lim ⁡ x → − ∞ a r c t a n x \lim_{x \to -\infty} arctanx limxarctanx − π 2 -\frac{\pi}{2} 2π
lim ⁡ x → 0 + [ x ] \lim_{x \to 0^+} [x] limx0+[x] 0 0 0
lim ⁡ x → 0 − [ x ] \lim_{x \to 0^-} [x] limx0[x] − 1 -1 1

三、微分学

1.基本求导公式

( x α ) ′ = α x α − 1 {(x^\alpha )}' =\alpha x^{\alpha -1} (xα)=αxα1

( α x ) ′ = α x l n α {(\alpha^x )}' = \alpha ^xln\alpha (αx)=αxlnα

( log ⁡ α x ) ′ = 1 x l n α (\log_{\alpha }{x})' =\frac{1}{xln\alpha} (logαx)=xlnα1

( log ⁡ ∣ x ∣ ) ′ = 1 x (\log{\mid x\mid})' =\frac{1}{x} (logx)=x1

( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx

( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx

( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x

( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2} } (arcsinx)=1x2 1

( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2} } (arccosx)=1x2 1

( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21

( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21

( s e c x ) ′ = s e c x t a n x (secx)'=secx tanx (secx)=secxtanx

[ l n ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 {[ln(x+\sqrt{x^2+1})]}'=\frac{1}{\sqrt{x^2+1} } [ln(x+x2+1 )]=x2+1 1

[ l n ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 {[ln(x+\sqrt{x^2-1})]}'=\frac{1}{\sqrt{x^2-1} } [ln(x+x21 )]=x21 1

[ l n ( x + x 2 + a ) ] ′ = 1 x 2 + a 2 {[ln(x+\sqrt{x^2+a})]}'=\frac{1}{\sqrt{x^2+a^2} } [ln(x+x2+a )]=x2+a2 1

2.微分学推广公式\结论
(1)导数定义推论

当 lim ⁡ x → x 0 f ( x ) x − x 0 = A 当\lim_{x \to x_0} \frac{f(x)}{x-x_0} =A limxx0xx0f(x)=A,且 f ( x ) 在 x = x 0 f(x)在x=x_0 f(x)x=x0处连续,则有 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0 f ′ ( x 0 ) = A . f'(x_0)=A. f(x0)=A.

(2)导函数保号性

y = f ( x ) 可 导 , f ′ ( x ) ≠ 0 , 则 f ′ ( x ) 必 恒 正 或 恒 负 . y=f(x)可导,f'(x)\ne 0,则f'(x)必恒正或恒负. y=f(x)f(x)=0f(x).

(3)反函数的二阶导数

y x = 1 x y y_x= \frac{1}{x_y} yx=xy1

y x x = − x y y ′ ′ ( x y ′ ) 3 y_{xx}= \frac{-x_{yy}''}{(x_y')^3} yxx=(xy)3xyy

3.多元函数微分
(1)可微定义

lim ⁡ △ x → 0 , △ y → 0 △ z − ( A △ x + B △ y ) ( △ x ) 2 + ( △ y ) 2 \lim_{\bigtriangleup x \to 0,\bigtriangleup y \to 0} \frac{\bigtriangleup z-(A\bigtriangleup x+B\bigtriangleup y)}{\sqrt{(\bigtriangleup x)^2+(\bigtriangleup y)^2} } x0,y0lim(x)2+(y)2 z(Ax+By)

(2)全微分

d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z }{\partial x } dx+\frac{\partial z }{\partial y } dy dz=xzdx+yzdy

(3)隐函数存在定理

d y d x = − F x ′ F y ′ \frac{dy }{dx }=-\frac{F'_x }{F'_y } dxdy=FyFx

(4)二阶偏导数

d 2 y d x 2 = − F x x ′ ′ F y ′ 2 − 2 F x ′ F y ′ F x y ′ ′ + F x ′ 2 F y y ′ ′ F y ′ 3 \frac{d^2y}{dx^2}=-\frac{F''_{xx}F_y'^2-2F'_xF'_yF''_{xy}+F_x'^2F''_{yy}}{F'^3_y} dx2d2y=Fy3FxxFy22FxFyFxy+Fx2Fyy

四、无穷级数

1.泰勒公式
(1)拉格朗日余项, ξ ∈ [ x , x 0 ] \xi \in [x,x_0] ξ[x,x0]

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + 1 ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − x 0 ) ( n + 1 ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dots +\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{1}{(n+1)!}f^{(n+1)}(\xi )(x-x_0)^{(n+1)} f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+(n+1)!1f(n+1)(ξ)(xx0)(n+1)

(2)配亚诺余项

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\dots +\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+o((xx0)n)

(3)麦克劳林公式 ( x 0 = 0 ) (x_0=0) (x0=0),拉格朗日余项, ξ ∈ [ 0 , x ] \xi \in [0,x] ξ[0,x]

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + ⋯ + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 f(x)=f(0)+f'(0)x+\dots +\frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\xi )}{(n+1)!}x^{n+1} f(x)=f(0)+f(0)x++n!f(n)(0)xn+(n+1)!f(n+1)(ξ)xn+1

(3)麦克劳林公式 ( x 0 = 0 ) (x_0=0) (x0=0),配亚诺余项

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\dots +\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f(0)x2++n!f(n)(0)xn+o(xn)

2.级数敛散性判别法

u n u_n un为数列通项, s n = ∑ n = 0 ∞ u n s_n=\sum_{n=0}^\infty u_n sn=n=0un为数列和,则有:

适用范围 方法 内容
正项级数 收敛原则(定义) lim ⁡ n → ∞ S n = A \lim_{n \to \infty} S_n=A limnSn=A,级数收敛; lim ⁡ n → ∞ S n = + ∞ \lim_{n \to \infty} S_n=+\infty limnSn=+,级数发散
正项级数 比较判别法 两个正项级数,大的收敛小的必收敛;小的发散大的必发散
正项级数 比较判别法推论 两个正项级数 ∑ n = 1 ∞ u n , ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} u_n,\sum_{n=1}^{\infty} v_n n=1un,n=1vn ≠ 0 \ne 0 =0 lim ⁡ n → ∞ u n v n = A \lim_{n \to \infty} \frac{u_n}{v_n}=A limnvnun=A 0 < A < + ∞ 0<A<+ \infty 0<A<+,两个级数同敛散。
正项级数 比值判别法 级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un lim ⁡ n → ∞ u n + 1 u n = A \lim_{n \to \infty} \frac{u_{n+1}}{u_n}=A limnunun+1=A,若 A < 1 A<1 A<1级数收敛;若 A > 1 A>1 A>1级数发散,若若 A = 1 A=1 A=1该法失效
正项级数 根值判别法 级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un lim ⁡ n → ∞ u n n = A \lim_{n \to \infty} \sqrt[n]{u_n}=A limnnun =A,若 A < 1 A<1 A<1级数收敛;若 A > 1 A>1 A>1级数发散,若若 A = 1 A=1 A=1该法失效
正项级数 积分判别法 级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un f ( x ) f(x) f(x) [ N , + ∞ ) [N,+\infty) [N,+)上是连续、非负、单调减少, u n = f ( n ) u_n=f(n) un=f(n),则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un ∫ N ∞ f ( x ) d x \int_{N}^{\infty } f(x)dx Nf(x)dx同敛散性
交错级数 莱布尼茨判别法 级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n , u n > 0 , u n \sum_{n=1}^{\infty} {(-1)^{n-1}u_n},u_n>0,u_n n=1(1)n1un,un>0,un单调不增, lim ⁡ n → ∞ = 0 \lim_{n \to \infty} =0 limn=0,则交错级数收敛
任意级数 绝对收敛 若级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty} {\mid u_n\mid } n=1un收敛,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} {u_n} n=1un绝对收敛
任意级数 条件收敛 若级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty} {\mid u_n\mid } n=1un发散,级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} {u_n } n=1un收敛,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} {u_n} n=1un绝对收敛
3.常见的级数敛散性
(1)具体级数的敛散性
级数 敛散性
(几何级数/等比级数) ∑ n = 1 ∞ a q n − 1 \sum_{n=1}^{\infty} aq^{n-1} n=1aqn1 ∣ q ∣ < 1 , 收 敛 \mid q\mid <1,收敛 q<1, ∣ q ∣ ≥ 1 , 发 散 \mid q\mid \ge 1,发散 q1,
(p级数) ∑ n = 1 ∞ 1 x p \sum_{n=1}^{\infty} \frac{1}{x^p} n=1xp1 ∣ p ∣ > 1 , 收 敛 \mid p\mid >1,收敛 p>1, ∣ p ∣ ≤ 1 , 发 散 \mid p\mid \le 1,发散 p1,
(p积分) ∫ 1 + ∞ 1 x p d x \int_{1}^{+\infty } \frac{1}{x^p} dx 1+xp1dx ∣ p ∣ > 1 , 收 敛 \mid p\mid >1,收敛 p>1, ∣ p ∣ ≤ 1 , 发 散 \mid p\mid \le 1,发散 p1,
∫ 0 1 1 x p d x \int_{0}^{1 } \frac{1}{x^p} dx 01xp1dx 0 < p < 1 , 收 敛 0< p <1,收敛 0<p<1, p ≥ 1 , 发 散 p\ge 1,发散 p1,
(广义p级数) ∑ n = 2 ∞ 1 x l n p x \sum_{n=2}^{\infty} \frac{1}{xln^px} n=2xlnpx1 ∣ p ∣ > 1 , 收 敛 \mid p\mid >1,收敛 p>1, ∣ p ∣ ≤ 1 , 发 散 \mid p\mid \le 1,发散 p1,
(广义p积分) ∫ 2 + ∞ 1 x l n p x d x \int_{2}^{+\infty } \frac{1}{xln^px} dx 2+xlnpx1dx ∣ p ∣ > 1 , 收 敛 \mid p\mid >1,收敛 p>1, ∣ p ∣ ≤ 1 , 发 散 \mid p\mid \le 1,发散 p1,
(调和级数) ∑ n = 1 ∞ 1 x \sum_{n=1}^{\infty} \frac{1}{x} n=1x1 发散
∑ n = 1 ∞ ( − 1 ) n 1 x \sum_{n=1}^{\infty} (-1)^n\frac{1}{x} n=1(1)nx1 收敛
∑ n = 1 ∞ ( − 1 ) n 1 x \sum_{n=1}^{\infty} (-1)^n\frac{1}{\sqrt{x}} n=1(1)nx 1 收敛
(2)抽象级数的判敛散问题

∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_n n=1vn, ∑ n = 1 ∞ w n \sum_{n=1}^{\infty} w_n n=1wn均是任意项级数,则有:

条件 结论
a , b , c a,b,c a,b,c为非零常数, a u n + b v n + c w n = 0 au_n+bv_n+cw_n=0 aun+bvn+cwn=0 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_n n=1vn, ∑ n = 1 ∞ w n \sum_{n=1}^{\infty} w_n n=1wn中有两个级数收敛,第三个必收敛
∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty} \mid u_n\mid n=1un收敛 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un发散 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty} \mid u_n\mid n=1un发散
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty} \mid u_n\mid n=1un不定
∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty} u^2_n n=1un2收敛 ∑ n = 1 ∞ u n n \sum_{n=1}^{\infty} \frac{u_n}{n} n=1nun绝对收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty} u^2_n n=1un2不定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( − 1 ) n u n \sum_{n=1}^{\infty} (-1)^nu_n n=1(1)nun不定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( − 1 ) n u n n \sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n} n=1(1)nnun不定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ u 2 n \sum_{n=1}^{\infty} u_{2n} n=1u2n(偶数项)不定, ∑ n = 1 ∞ u 2 n − 1 \sum_{n=1}^{\infty} u_{2n-1} n=1u2n1(奇数项)不定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( u 2 n − 1 + u 2 n ) \sum_{n=1}^{\infty}( u_{2n-1}+u_{2n}) n=1(u2n1+u2n)收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( u 2 n − 1 − u 2 n ) \sum_{n=1}^{\infty}( u_{2n-1}-u_{2n}) n=1(u2n1u2n)不定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( u n + u n + 1 ) \sum_{n=1}^{\infty}( u_{n}+u_{n+1}) n=1(un+un+1)收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ ( u n − u n + 1 ) \sum_{n=1}^{\infty}( u_{n}-u_{n+1}) n=1(unun+1)收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ u n + ∑ n = 1 ∞ u n + 1 \sum_{n=1}^{\infty}u_{n}+\sum_{n=1}^{\infty}u_{n+1} n=1un+n=1un+1收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ u n − ∑ n = 1 ∞ u n + 1 \sum_{n=1}^{\infty}u_{n}-\sum_{n=1}^{\infty}u_{n+1} n=1unn=1un+1收敛
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n n=1un收敛 ∑ n = 1 ∞ u n u n + 1 \sum_{n=1}^{\infty} u_{n}u_{n+1} n=1unun+1不定
4.常见函数的幂级数展开式
展开式 收敛域
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + ⋯ + x n n ! + … e^x=\sum_{n=0}^{\infty } \frac{x^n}{n!} =1+x+\frac{x^2}{2!}+\dots +\frac{x^n}{n!}+\dots ex=n=0n!xn=1+x+2!x2++n!xn+ − ∞ < x < + ∞ - \infty <x<+\infty <x<+
1 x + 1 = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + … \frac{1}{x+1} =\sum_{n=0}^{\infty } (-1)^nx^n =1-x+x^2-x^3+\dots +(-1)^nx^n+\dots x+11=n=0(1)nxn=1x+x2x3++(1)nxn+ − 1 < x < 1 - 1 <x<1 1<x<1
1 x − 1 = ∑ n = 0 ∞ x n = 1 + x + x 2 + ⋯ + x n + … \frac{1}{x-1} =\sum_{n=0}^{\infty }x^n =1+x+x^2+\dots +x^n+\dots x11=n=0xn=1+x+x2++xn+ − 1 < x < 1 - 1 <x<1 1<x<1
l n ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + … ln(1+x) =\sum_{n=0}^{\infty } (-1)^{n-1}\frac{x^n}{n} =x-\frac{x^2}{2} +\dots +(-1)^{n-1}\frac{x^n}{n}+\dots ln(1+x)=n=0(1)n1nxn=x2x2++(1)n1nxn+ − 1 < x ≤ 1 - 1 <x\le 1 1<x1
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + … α ( α − 1 ) … ( α − n + 1 ) n ! x n + … (1+x)^\alpha =1+\alpha x+\frac{\alpha (\alpha -1)}{2!} x^2+\dots \frac{\alpha (\alpha -1)\dots (\alpha-n+1)}{n!}x^n+\dots (1+x)α=1+αx+2!α(α1)x2+n!α(α1)(αn+1)xn+ 当 α ≤ − 1 , x ∈ ( − 1 , 1 ) 当\alpha \le -1,x\in (-1,1) α1,x(1,1) 当 − 1 < α < 0 , x ∈ ( − 1 , 1 ] 当-1<\alpha <0,x\in (-1,1] 1<α<0,x(1,1] 当 α > 0 , α ∉ N + , x ∈ [ − 1 , 1 ] 当\alpha >0,\alpha\notin N_+,x\in [-1,1] α>0,α/N+,x[1,1] 当 α > 0 , α ∈ N + , x ∈ R 当\alpha >0,\alpha\in N_+,x\in R α>0,αN+,xR
− l n ( 1 − x ) = ∑ n = 1 ∞ x n n -ln(1-x) =\sum_{n=1}^{\infty } \frac{x^n}{n} ln(1x)=n=1nxn − 1 ≤ x < 1 - 1 \le x< 1 1x<1
1 ( 1 − x ) 2 = ∑ n = 1 ∞ n x n − 1 \frac{1}{(1-x)^2} =\sum_{n=1}^{\infty } nx^{n-1} (1x)21=n=1nxn1 − 1 < x < 1 - 1 < x< 1 1<x<1
s i n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx =\sum_{n=0}^{\infty } (-1)^{n}\frac{x^{2n+1}}{(2n+1)!} sinx=n=0(1)n(2n+1)!x2n+1 − ∞ < x < + ∞ - \infty <x< +\infty <x<+
c o s x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! cosx =\sum_{n=0}^{\infty } (-1)^{n}\frac{x^{2n}}{(2n)!} cosx=n=0(1)n(2n)!x2n − ∞ < x < + ∞ - \infty <x< +\infty <x<+
5.幂级数运算法则
运算法则 公式
通项,下标一起变 ∑ n = k ∞ a n x n = ∑ n = k + l ∞ a n − l x n − l \sum_{n=k}^{\infty}a_nx^n=\sum_{n=k+l}^{\infty}a_{n-l}x^{n-l} n=kanxn=n=k+lanlxnl
通项不变,下标变 ∑ n = k ∞ a n x n = a k x k + a k + 1 x k + 1 + ⋯ + a k + l − 1 x k + l − 1 + ∑ n = k + l ∞ a n x n \sum_{n=k}^{\infty}a_nx^n=a_kx^k+a_{k+1}x^{k+1}+ \dots+a_{k+l-1}x^{k+l-1}+\sum_{n=k+l}^{\infty}a_nx^n n=kanxn=akxk+ak+1xk+1++ak+l1xk+l1+n=k+lanxn
通项变,下标不变 ∑ n = k ∞ a n x n = x l ∑ n = k ∞ a n x n − l \sum_{n=k}^{\infty}a_nx^n=x^l\sum_{n=k}^{\infty}a_nx^{n-l} n=kanxn=xln=kanxnl

五、中值定理

1.中值定理
定理 条件 结论
有界与最值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, m ≤ f ( x ) ≤ M m\le f(x)\le M mf(x)M m , M m,M m,M f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最小值与最大值
介值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, m ≤ μ ≤ M m\le \mu \le M mμM 存在 ξ ∈ [ a , b ] , f ( ξ ) = μ \xi \in [a,b],f(\xi)=\mu ξ[a,b]f(ξ)=μ
(离散的)平均值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, a < x 1 < x 2 < ⋯ < x n < b a<x_1<x_2<\dots<x_n<b a<x1<x2<<xn<b 至少存在一点 ξ ∈ [ x 1 , x n ] , f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n \xi \in [x_1,x_n],f(\xi)=\frac{f(x_1)+f(x_2)+\dots+f(x_n)}{n} ξ[x1,xn]f(ξ)=nf(x1)+f(x2)++f(xn)
零点定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0 存在 ξ ∈ ( a , b ) , f ( ξ ) = 0 \xi \in (a,b),f(\xi)=0 ξ(a,b)f(ξ)=0
费马定理 f ( x ) f(x) f(x) x 0 x_0 x0处可导, f ( x ) f(x) f(x) x 0 x_0 x0处取极值 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
罗尔定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上可导, f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) 存在 ξ ∈ ( a , b ) , f ( ξ ) = 0 \xi \in (a,b),f(\xi)=0 ξ(a,b)f(ξ)=0
拉格朗日中值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上可导 存在 ξ ∈ ( a , b ) , f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) \xi \in (a,b),f(b)-f(a)=f'(\xi )(b-a) ξ(a,b)f(b)f(a)=f(ξ)(ba)
柯西中值定理 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续, f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ) (a,b) (a,b)上可导, g ′ ( x ) ≠ 0 g'(x)\ne 0 g(x)=0 存在 ξ ∈ ( a , b ) , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \xi \in (a,b),\frac{f(b)-f(a)}{g(b)-g(a)} =\frac{f'(\xi)}{g'(\xi)} ξ(a,b)g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
积分中值定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上可导 存在 ξ ∈ [ a , b ] , ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \xi \in [a,b],\int_{a}^{b} f(x)dx=f(\xi)(b-a) ξ[a,b]abf(x)dx=f(ξ)(ba)
导数零点定理 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可导, f + ′ ( a ) ⋅ f − ′ ( b ) < 0 f'_+(a) \cdot f'_-(b)<0 f+(a)f(b)<0 存在 ξ ∈ ( a , b ) , f ( ξ ) = 0 \xi \in (a,b),f(\xi)=0 ξ(a,b)f(ξ)=0
2.常见辅助函数的构造方法

u v ′ + u ′ v = ( u v ) ′ uv'+u'v=(uv)' uv+uv=(uv)

f ( x ) f ′ ( x ) = 1 2 [ f 2 ( x ) ] ′ f(x)f'(x)=\frac{1 }{2} [f^2(x)]' f(x)f(x)=21[f2(x)]

[ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) = [ f ( x ) ⋅ f ′ ( x ) ] [f'(x)]^2+f(x)f''(x)=[f(x) \cdot f'(x)] [f(x)]2+f(x)f(x)=[f(x)f(x)]

[ f ′ ( x ) + f ( x ) φ ′ ( x ) ] e φ ( x ) = [ f ( x ) e φ ( x ) ] ′ [f'(x)+f(x)\varphi'(x)]e^{\varphi(x)}=[f(x)e^{\varphi(x)}]' [f(x)+f(x)φ(x)]eφ(x)=[f(x)eφ(x)]

对于上式,

φ ( x ) = x \varphi(x)=x φ(x)=x时, f ( x ) + f ′ ( x ) = [ f ( x ) e x ] ′ e x f(x)+f'(x)=\frac{[f(x)e^x]'}{e^x} f(x)+f(x)=ex[f(x)ex]

φ ( x ) = − x \varphi(x)=-x φ(x)=x时, f ( x ) − f ′ ( x ) = [ f ( x ) e − x ] ′ e − x f(x)-f'(x)=\frac{[f(x)e^{-x}]'}{e^{-x}} f(x)f(x)=ex[f(x)ex]

φ ( x ) = k x \varphi(x)=kx φ(x)=kx时, f ( x ) + k f ′ ( x ) = [ f ( x ) e k x ] ′ e k x f(x)+kf'(x)=\frac{[f(x)e^{kx}]'}{e^{kx}} f(x)+kf(x)=ekx[f(x)ekx]

猜你喜欢

转载自blog.csdn.net/Obs_cure/article/details/123481083