最短路。

       Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点到B,所以,我们假设dist(AB)为节点A到节点B的最短路径的距离,对于每一个节点K,我们检查dist(AK) + dist(KB) < dist(AB)是否成立,如果成立,证明从A到K再到B的路径比A直接到B的路径短,我们便设置 dist(AB) = dist(AK) + dist(KB),这样一来,当我们遍历完所有节点K,dist(AB)中记录的便是A到B的最短路径的距离。

        很简单吧,代码看起来可能像下面这样:

for (int i=0; i<n; ++i) {
  for (int j=0; j<n; ++j) {
    for (int k=0; k<n; ++k) {
      if (dist[i][k] + dist[k][j] < dist[i][j] ) {
        dist[i][j] = dist[i][k] + dist[k][j];
      }
    }
  }
}

        但是这里我们要注意循环的嵌套顺序,如果把检查所有节点K放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

        让我们来看一个例子,看下图:

image

        图中红色的数字代表边的权重。如果我们在最内层检查所有节点K,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9,而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点K放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时dist(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

        ps:个人觉得,这和银行家算法判断安全状态(每种资源去测试所有线程),树状数组更新(更新所有相关项)一样的思想。

for (int k=0; k<n; ++k) {
  for (int i=0; i<n; ++i) {
    for (int j=0; j<n; ++j) {
            /*
            实际中为防止溢出,往往需要选判断 dist[i][k]和dist[k][j
            都不是Inf ,只要一个是Inf,那么就肯定不必更新。 
            */
      if (dist[i][k] + dist[k][j] < dist[i][j] ) {
        dist[i][j] = dist[i][k] + dist[k][j];
      }
    }
  }
}

图结构练习——最短路径

Time Limit: 1000MS  Memory Limit: 65536KB

Problem Description

 给定一个带权无向图,求节点1到节点n的最短路径。
 

Input

 输入包含多组数据,格式如下。
第一行包括两个整数n m,代表节点个数和边的个数。(n<=100)
剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c。
 

Output

 每组输出占一行,仅输出从1到n的最短路径权值。(保证最短路径存在)
 

Example Input

3 2
1 2 1
1 3 1
1 0

Example Output

1
0
   
   
01 #include<iostream>
02 #include<cstring>
03 using namespace std;
04 int main()
05 {
06     int e[110][110], i, k, j, n, m, t1, t2, t3;
07     int inf = 99999999;
08     while(cin>>n>>m)
09     {
10         for(i = 1; i<=n; i++)
11         {
12             for(j = 1; j<=n; j++)
13             {
14                 if(i==j) e[i][j] = 0;
15                 else e[i][j] = inf;
16             }
17         }
18         for(i = 1; i<=m; i++)
19         {
20             cin>>t1>>t2>>t3;
21             if(e[t1][t2]>t3) e[t1][t2] = e[t2][t1] = t3;
22         }
23         for(k = 1; k<=n; k++)
24         {
25             for(i = 1; i<=n; i++)
26             {
27                 for(j = 1; j<=n; j++)
28                 {
29                     if(e[i][j]>e[i][k]+e[k][j])
30                     {
31                         e[i][j] = e[i][k]+e[k][j];
32                     }
33                 }
34             }
35         }
36         /*假设dist(AB)为节点A到节点B的最短路径的距离,
37         对于每一个节点K,我们检查
38         dist(AK) + dist(KB) < dist(AB)
39         是否成立,如果成立,
40         证明从A到K再到B的路径比A直接到B的路径短,
41         我们便设置 dist(AB) = dist(AK) + dist(KB),
42         这样一来,当我们遍历完所有节点K,
43         dist(AB)中记录的便是A到B的最短路径的距离。*/
44         cout<<e[1][n]<<endl;
45     }
46 }

2、Dijkstra算法介绍

  • 算法特点:

    迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

  • 算法的思路

    扫描二维码关注公众号,回复: 1439750 查看本文章

    Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。  然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,  然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。  然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

3、Dijkstra算法示例演示

下面我求下图,从顶点v1到其他各个顶点的最短路径

这里写图片描述

首先第一步,我们先声明一个dis数组,该数组初始化的值为:  这里写图片描述

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。  为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: < v3,v4 >,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果:  这里写图片描述

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 < v3,v4> 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度:< v5,v4>和 < v5,v6>,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图:  这里写图片描述

然后,继续从dis中选择未确定的顶点的值中选择一个最小的值,发现dis[3]的值是最小的,所以把v4加入到集合T中,此时集合T={v1,v3,v5,v4},然后,考虑v4的出度是否会影响我们的数组dis的值,v4有一条出度:< v5,v4>,然后我们发现:v1–v5–v4–v6的长度为:60,而dis[5]的值为90,所以我们要更新dis[5]的值,更新后的dis数组如下图:  这里写图片描述

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下:  这里写图片描述

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

起点  终点    最短路径    长度
v1    v2     无          ∞    
      v3     {v1,v3}    10
      v4     {v1,v5,v4}  50
      v5     {v1,v5}    30
      v6     {v1,v5,v4,v6} 60


猜你喜欢

转载自blog.csdn.net/beposit/article/details/79209883