ChatGPT微积分求解

如何求极限

lim ⁡ x → ∞ [ ∫ 0 1 ( 1 + sin ⁡ π 2 t ) n d t ] 1 n \lim_{x \to \infty} \left [ \int_{0}^{1} \left ( 1+ \sin \frac{\pi }{2}t \right )^{n} \mathrm{d}t \right ] ^ \frac{1}{n} xlim[01(1+sin2πt)ndt]n1

根据极限与积分的交换规则,我们可以将极限符号移入积分符号中,得到:

lim ⁡ n → ∞ [ ∫ 0 1 ( 1 + sin ⁡ π 2 t ) n d t ] 1 n = lim ⁡ n → ∞ [ ∫ 0 1 ( 1 + sin ⁡ π 2 t ) n d t ] 1 n   = exp ⁡ ( lim ⁡ n → ∞ ln ⁡ ( ∫ 0 1 ( 1 + sin ⁡ π 2 t ) n d t ) n )   = exp ⁡ ( lim ⁡ n → ∞ 1 n ln ⁡ [ 1 − cos ⁡ π 2 ( n + 1 ) π ( n + 1 ) + 2 π ] )   = exp ⁡ ( lim ⁡ n → ∞ ln ⁡ ( 1 − cos ⁡ π 2 ( n + 1 ) ) n + lim ⁡ n → ∞ ln ⁡ ( 2 π ( n + 1 ) ) n )   = exp ⁡ ( 0 + 0 )   = 1 . \begin{aligned} \lim_{n\to \infty}\left[\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right]^\frac{1}{n}&=\lim_{n\to\infty}\left[\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right]^{\frac{1}{n}}\ &=\exp\left(\lim_{n\to\infty}\frac{\ln\left(\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right)}{n}\right)\ &=\exp\left(\lim_{n\to\infty}\frac{1}{n}\ln\left[\frac{1-\cos\frac{\pi}{2}(n+1)}{\pi(n+1)}+\frac{2}{\pi}\right]\right)\ &=\exp\left(\lim_{n\to\infty}\frac{\ln\left(1-\cos\frac{\pi}{2}(n+1)\right)}{n}+\lim_{n\to\infty}\frac{\ln\left(\frac{2}{\pi(n+1)}\right)}{n}\right)\ &=\exp\left(0+0\right)\ &=\boxed{1}. \end{aligned} nlim[01(1+sin2πt)ndt]n1=nlim[01(1+sin2πt)ndt]n1 =exp nlimnln(01(1+sin2πt)ndt)  =exp(nlimn1ln[π(n+1)1cos2π(n+1)+π2]) =exp nlimnln(1cos2π(n+1))+nlimnln(π(n+1)2)  =exp(0+0) =1.

其中,在第三个等号处,我们使用了积分公式 ∫ 0 1 sin ⁡ n ( π / 2 t ) d t = 1 − cos ⁡ ( π / 2 ) ( n + 1 ) π ( n + 1 ) + 2 π \int_0^1 \sin^{n} (\pi/2 t) dt= \frac{1-\cos(\pi/2)(n+1)}{\pi(n+1)}+\frac{2}{\pi} 01sinn(π/2t)dt=π(n+1)1cos(π/2)(n+1)+π2。在最后一个等号处,我们利用了当 n → ∞ n\to \infty n时, ln ⁡ ( 1 − cos ⁡ π 2 ( n + 1 ) ) n \frac{\ln\left(1-\cos\frac{\pi}{2}(n+1)\right)}{n} nln(1cos2π(n+1)) ln ⁡ ( 2 π ( n + 1 ) ) n \frac{\ln\left(\frac{2}{\pi(n+1)}\right)}{n} nln(π(n+1)2)的极限均为 0 0 0

猜你喜欢

转载自blog.csdn.net/jiazhen/article/details/129571215