贝叶斯推断

原文链接:

http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html

http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html

http://www.ruanyifeng.com/blog/2012/10/spelling_corrector.html

 

以下为笔记:

贝叶斯推断是贝叶斯定理的应用。

 

1.贝叶斯定理:实际上就是条件概率公式

条件概率(Conditional probability):就是只事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

P(A|B)=P(A∩B)/P(B) =>P(A∩B)=P(A|B)*P(B), 同理可得=>P(A∩B)=P(B|A)*P(A) , 所以 P(A|B)*P(B)=P(B|A)*P(A),即  P(A|B)=P(B|A)*P(A)/P(B)

 

2. 全概率公式

P(B)=P(B∩A)+P(B∩A')=P(B|A)*P(A)+P(B|A')*P(A') 

这就是全概率公式:如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

因此条件概率公式:P(A|B)=P(B|A)*P(A)/ ( P(B|A)*P(A)+P(B|A')*P(A') )

 

3.贝叶斯推断

P(A|B)=P(A)*P(B|A)/P(B):=> 后验概率=先验概率 * 调整因子

P(A):"先验概率" (Prior probability) , 即在B事件发生之前,我们对A事件概率的一个判断;

P(A|B):"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估;

 

P(B|A)/P(B):"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

 

4.例子:

栗子1:

 

两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做"先验概率",即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做"后验概率",即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到 P(H1|E)=P(H1)*P(E|H1)/P(E)

已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于0.75,那么求出P(E)就可以得到答案。根据全概率公式,

P(E)=P(E|H1)*P(H1)+P(E|H2)*P(H2)  ,所以,P(E)=0.75x0.5+0.5x0.5=0.625

将数字代入原方程,得到 P(H1|E)=0.5x0.75/0.625 = 0.6

 

栗子2:

 

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据条件概率公式,P(A|B)=P(B|A)*P(A)/P(B)

用全概率公式改写分母,P(A|B)=P(A)*P(B|A)/ ( P(B|A)*P(A)+P(B|A')*P(A') )

将数字代入,P(A|B)=0.001*0.99 / (0.99*0.001+0.05*0.999)≈ 0.019

我们得到了一个惊人的结果,P(A|B)约等于0.019。也就是说,即使检验呈现阳性,病人得病的概率,也只是从0.1%增加到了2%左右。这就是所谓的"假阳性",即阳性结果完全不足以说明病人得病。

为什么会这样?为什么这种检验的准确率高达99%,但是可信度却不到2%?答案是与它的误报率太高有关。(【习题】如果误报率从5%降为1%,请问病人得病的概率会变成多少?P≈0.90164)

 

5.应用1—垃圾邮件过滤

传统的垃圾邮件过滤方法:“关键词法”和“校验码法”。前者过滤依据是特定的词语,后者是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。效果不理想且容易规避。

贝叶斯过滤器:具有自我学习功能,收到垃圾邮件越多,准确率越高。原理:贝叶斯推断。

过程如下图:




栗子:

历史资料库:我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%,P(W|S)=5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%,P(W|H)=0.05%;

贝叶斯过滤器使用:未分析前,假定是垃圾邮件概率50%,P(H)=P(S)=50%;

对新邮件进行解析: P(S|W)=5%X50% / (5%X50%+0.05%X50%) =99%

 

模型改进:

单凭一个词还无法断定新邮件就是垃圾邮件,需要多个词联合判断,提高准确率。

联合概率的计算:

联合概率:多个事件发生的情况下,另一个事件发生的概率是多大。例如已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。





 

加上所有事件都是独立事件,P(E1)=P(S|W1)P(S|W2)P(S) , P(E2)=(1-P(S|W1)) (1-P(S|W2)) (1-P(S)) ,又由于在W1和W2已经发生的情况下,垃圾邮件的概率等于下面的式子 P=P(E1)/(P(E1)+P(E2)) = P(S|W1)P(S|W2)P(S) / ( (1-P(S|W1)) (1-P(S|W2)) (1-P(S)) ) ,P(S)=0.5,= > 

P= P1P2/(P1P2+(1-P1)(1-P2)) --联合概率公式

 

更多个词(假定15个词):最终联合概率公式:P= P1 P2 ...P15 / (P1 P2 ...P15+(1-P1) (1-P2) ... (1-P15))

 

6.应用2—拼写检查

场景:用户输入一个检索词,拼错,提示正确的拼法。

应用贝叶斯推断有点:快,短时间内可处理大量文本,且有很高的精度。

 

6.1原理:

用户输入了一个单词。这时分成两种情况:拼写正确,或者拼写不正确。我们把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong)。

所谓"拼写检查",就是在发生w的情况下,试图推断出c。从概率论的角度看,就是已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求下面这个式子的最大值。P(c|w)

根据贝叶斯定理:P(c|w) = P(w|c) * P(c) / P(w)

对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们求的其实是P(w|c) * P(c) 的最大值。

P(c)的含义是,某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

P(w|c)的含义是,在试图拼写c的情况下,出现拼写错误w的概率。这需要统计数据的支持,但是为了简化问题,我们假设两个单词在字形上越接近,就有越可能拼错,P(w|C)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词hello,那么错误拼成hallo(相差一个字母)的可能性,就比拼成haallo高(相差两个字母)。

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现 P(w|c) * P(c) 的最大值。

 

6.2算法:

第一步,建立一个足够大的文本库。

网上有一些免费来源,比如古登堡计划、Wiktionary、英国国家语料库等等。

第二步,取出文本库的每一个单词,统计它们的出现频率。

第三步,根据用户输入的单词,得到其所有可能的拼写相近的形式。

所谓"拼写相近",指的是两个单词之间的"编辑距离"(edit distance)不超过2。也就是说,两个词只相差1到2个字母,只通过----删除、交换、更改和插入----这四种操作中的一种,就可以让一个词变成另一个词。

第四步,比较所有拼写相近的词在文本库的出现频率。频率最高的那个词,就是正确的拼法。

根据Peter Norvig的验证,这种算法的精确度大约为60%-70%(10个拼写错误能够检查出6个。)虽然不令人满意,但是能够接受。毕竟它足够简单,计算速度极快。(本文的最后部分,将详细讨论这种算法的缺陷在哪里。)

 

6.3 代码:(python)

第一步,把网上下载的文本库保存为big.txt文件。这步不需要编程。

第二步,加载Python的正则语言模块(re)和collections模块,后面要用到。

  import re, collections

第三步,定义words()函数,用来取出文本库的每一个词。

  def words(text): return re.findall('[a-z]+', text.lower())

lower()将所有词都转成小写,避免因为大小写不同,而被算作两个词。

第四步,定义一个train()函数,用来建立一个"字典"结构。文本库的每一个词,都是这个"字典"的键;它们所对应的值,就是这个词在文本库的出现频率。

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

collections.defaultdict(lambda: 1)的意思是,每一个词的默认出现频率为1。这是针对那些没有出现在文本库的词。如果一个词没有在文本库出现,我们并不能认定它就是一个不存在的词,因此将每个词出现的默认频率设为1。以后每出现一次,频率就增加1。

第五步,使用words()和train()函数,生成上一步的"词频字典",放入变量NWORDS。

  NWORDS = train(words(file('big.txt').read()))

第六步,定义edits1()函数,用来生成所有与输入参数word的"编辑距离"为1的词。

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

edit1()函数中的几个变量的含义如下:

  (1)splits:将word依次按照每一位分割成前后两半。比如,'abc'会被分割成 [('', 'abc'), ('a', 'bc'), ('ab', 'c'), ('abc', '')] 。

  (2)beletes:依次删除word的每一位后、所形成的所有新词。比如,'abc'对应的deletes就是 ['bc', 'ac', 'ab'] 。

  (3)transposes:依次交换word的邻近两位,所形成的所有新词。比如,'abc'对应的transposes就是 ['bac', 'acb'] 。

  (4)replaces:将word的每一位依次替换成其他25个字母,所形成的所有新词。比如,'abc'对应的replaces就是 ['abc', 'bbc', 'cbc', ... , 'abx', ' aby', 'abz' ] ,一共包含78个词(26 × 3)。

  (5)inserts:在word的邻近两位之间依次插入一个字母,所形成的所有新词。比如,'abc' 对应的inserts就是['aabc', 'babc', 'cabc', ..., 'abcx', 'abcy', 'abcz'],一共包含104个词(26 × 4)。

最后,edit1()返回deletes、transposes、replaces、inserts的合集,这就是与word"编辑距离"等于1的所有词。对于一个n位的词,会返回54n+25个词。

第七步,定义edit2()函数,用来生成所有与word的"编辑距离"为2的词语。

  def edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

但是这样的话,会返回一个 (54n+25) * (54n+25) 的数组,实在是太大了。因此,我们将edit2()改为known_edits2()函数,将返回的词限定为在文本库中出现过的词。

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

第八步,定义correct()函数,用来从所有备选的词中,选出用户最可能想要拼写的词。

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

我们采用的规则为:

  (1)如果word是文本库现有的词,说明该词拼写正确,直接返回这个词;

  (2)如果word不是现有的词,则返回"编辑距离"为1的词之中,在文本库出现频率最高的那个词;

  (3)如果"编辑距离"为1的词,都不是文本库现有的词,则返回"编辑距离"为2的词中,出现频率最高的那个词;

  (4)如果上述三条规则,都无法得到结果,则直接返回word。

至此,代码全部完成,合起来一共21行。

  import re, collections

  def words(text): return re.findall('[a-z]+', text.lower())

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

  NWORDS = train(words(file('big.txt').read()))

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

使用方法如下:

  >>> correct('speling')

  'spelling'

  >>> correct('korrecter')

  'corrector'

6.4 缺陷

我们使用的这种算法,有一些缺陷,如果投入生产环境,必须在这些方面加入改进。

(1)文本库必须有很高的精确性,不能包含拼写错误的词。

如果用户输入一个错误的拼法,文本库恰好包含了这种拼法,它就会被当成正确的拼法。

(2)对于不包含在文本库中的新词,没有提出解决办法。

如果用户输入一个新词,这个词不在文本库之中,就会被当作错误的拼写进行纠正。

(3)程序返回的是"编辑距离"为1的词,但某些情况下,正确的词的"编辑距离"为2。

比如,用户输入reciet,会被纠正为recite(编辑距离为1),但用户真正想要输入的词是receipt(编辑距离为2)。也就是说,"编辑距离"越短越正确的规则,并非所有情况下都成立。

(4)有些常见拼写错误的"编辑距离"大于2。

这样的错误,程序无法发现。下面就是一些例子,每一行前面那个词是正确的拼法,后面那个则是常见的错误拼法。

purple perpul

curtains courtens

minutes muinets

successful sucssuful

inefficient ineffiect

availability avaiblity

dissension desention

unnecessarily unessasarily

necessary nessasary

unnecessary unessessay

night nite

assessing accesing

necessitates nessisitates

(5)用户输入的词的拼写正确,但是其实想输入的是另一个词。

比如,用户输入是where,这个词拼写正确,程序不会纠正。但是,用户真正想输入的其实是were,不小心多打了一个h。

(6)程序返回的是出现频率最高的词,但用户真正想输入的是另一个词。

比如,用户输入ther,程序会返回the,因为它的出现频率最高。但是,用户真正想输入的其实是their,少打了一个i。也就是说,出现频率最高的词,不一定就是用户想输入的词。

(7)某些词有不同的拼法,程序无法辨别。

比如,英国英语和美国英语的拼法不一致。英国用户输入'humur',应该被纠正为'humour';美国用户输入'humur',应该被纠正为'humor'。但是,我们的程序会统一纠正为'humor'。

猜你喜欢

转载自vinking934296.iteye.com/blog/2303772