梯度下降理解

以下根据https://www.jianshu.com/p/c7e642877b0e转载并编辑总结得到。

梯度下降

1.梯度下降的场景假设

梯度下降的基本过程就和下山的场景很类似。
首先,我们有一个可微分的函数。这个函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向。
所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。
梯度实际上就是多变量微分的一般化。
下面这个例子:
在这里插入图片描述
我们可以看到,梯度就是分别对每个变量进行微分,然后用逗号分割开,梯度是用<>包括起来,说明梯度其实一个向量。

  • 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率
  • 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向

梯度下降的数学解释

在这里插入图片描述
此公式的意义是:J是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是α,走完这个段步长,就到达了Θ1这个点!
在这里插入图片描述
下面就这个公式的几个常见的疑问:

  • α是什么含义?
    α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!
    在这里插入图片描述
  • 为什么要梯度要乘以一个负号?
    梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号

2.梯度下降算法实例

单变量函数的梯度下降

我们假设有一个单变量函数:
在这里插入图片描述
函数的微分:
在这里插入图片描述
初始化:
在这里插入图片描述
学习率为:
在这里插入图片描述
根据梯度下降公式:
在这里插入图片描述
我们开始进行梯度下降的迭代计算过程:
在这里插入图片描述
如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底
在这里插入图片描述

多变量函数的梯度下降:

我们假设有一个目标函数:
在这里插入图片描述
现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下来,我们会从梯度下降算法开始一步步计算到这个最小值!
我们假设初始的起点为:
在这里插入图片描述
初始的学习率为:
在这里插入图片描述
函数的梯度为:
在这里插入图片描述
进行多次迭代:
在这里插入图片描述
我们发现,已经基本靠近函数的最小值点:(0,0)
在这里插入图片描述

3.梯度下降算法的实现:

下面我们将用python实现一个简单的梯度下降算法。场景是一个简单的线性回归的例子:假设现在我们有一系列的点,如下图所示
在这里插入图片描述
我们将用梯度下降法来拟合出这条直线!
首先,我们需要定义一个代价函数,在此我们选用均方误差代价函数(这个就是山坡!!!)
在这里插入图片描述
此公示中

  • m是数据集中点的个数
  • ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响
  • y 是数据集中每个点的真实y坐标的值
  • h 是我们的预测函数,根据每一个输入x,根据Θ 计算得到预测的y值,即: 在这里插入图片描述
    我们可以根据代价函数看到,代价函数中的变量有两个,所以是一个多变量的梯度下降问题,求解出代价函数的梯度,也就是分别对两个变量进行微分
    在这里插入图片描述
    明确了代价函数和梯度,以及预测的函数形式。我们就可以开始编写代码了。但在这之前,需要说明一点,就是为了方便代码的编写,我们会将所有的公式都转换为矩阵的形式,python中计算矩阵是非常方便的,同时代码也会变得非常的简洁。
    为了转换为矩阵的计算,我们观察到预测函数的形式:
    在这里插入图片描述
    我们有两个变量,为了对这个公式进行矩阵化,我们可以给每一个点x增加一维,这一维的值固定为1,这一维将会乘到Θ0上。这样就方便我们统一矩阵化的计算
    在这里插入图片描述
    然后我们将代价函数和梯度转化为矩阵向量相乘的形式(这里并没太懂,留成一个疑问吧
    在这里插入图片描述

4.编写代码:

首先,我们需要定义数据集和学习率

    import numpy as np
    #Size of the points dataset.
    m = 20
   #Points x-coordinate and dummy value (x0, x1).
    X0 = np.ones((m, 1))
    X1 = np.arange(1, m+1).reshape(m, 1)
    X = np.hstack((X0, X1))
   #Points y-coordinate
    y = np.array([
        3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
        11, 13, 13, 16, 17, 18, 17, 19, 21
    ]).reshape(m, 1)
    #The Learning Rate alpha.
    alpha = 0.01

接下来我们以矩阵向量的形式定义代价函数和代价函数的梯度
def error_function(theta, X, y):
‘’‘Error function J definition.’’’
diff = np.dot(X, theta) - y
return (1./2*m) * np.dot(np.transpose(diff), diff)

def gradient_function(theta, X, y):
    '''Gradient of the function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./m) * np.dot(np.transpose(X), diff)

最后就是算法的核心部分,梯度下降迭代计算
def gradient_descent(X, y, alpha):
‘’‘Perform gradient descent.’’’
theta = np.array([1, 1]).reshape(2, 1)
gradient = gradient_function(theta, X, y)
while not np.all(np.absolute(gradient) <= 1e-5):
theta = theta - alpha * gradient
gradient = gradient_function(theta, X, y)
return theta
当梯度小于1e-5时,说明已经进入了比较平滑的状态,类似于山谷的状态,这时候再继续迭代效果也不大了,所以这个时候可以退出循环!
完整的代码如下

 import numpy as np
    #Size of the points dataset.
    m = 20
    #Points x-coordinate and dummy value (x0, x1).
    X0 = np.ones((m, 1))
    X1 = np.arange(1, m+1).reshape(m, 1)
    X = np.hstack((X0, X1))
    #Points y-coordinate
    y = np.array([
        3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
        11, 13, 13, 16, 17, 18, 17, 19, 21
    ]).reshape(m, 1)
    #The Learning Rate alpha.
    alpha = 0.01
    
    def error_function(theta, X, y):
        '''Error function J definition.'''
        diff = np.dot(X, theta) - y
        return (1./2*m) * np.dot(np.transpose(diff), diff)
    
    def gradient_function(theta, X, y):
        '''Gradient of the function J definition.'''
        diff = np.dot(X, theta) - y
        return (1./m) * np.dot(np.transpose(X), diff)
    
    def gradient_descent(X, y, alpha):
        '''Perform gradient descent.'''
        theta = np.array([1, 1]).reshape(2, 1)
        gradient = gradient_function(theta, X, y)
        while not np.all(np.absolute(gradient) <= 1e-5):
            theta = theta - alpha * gradient
            gradient = gradient_function(theta, X, y)
        return theta
    
    optimal = gradient_descent(X, y, alpha)
    print('optimal:', optimal)
    print('error function:', error_function(optimal, X, y)[0,0])

运行代码,计算得到的结果如下
在这里插入图片描述
所拟合出的直线如下
在这里插入图片描述

5.疑问和总结

从函数到矩阵表示没明白。
矩阵表示梯度没看明白。
codes没有认真理解。

猜你喜欢

转载自blog.csdn.net/h_l_dou/article/details/82826653