样本方差(sample variance)的分母为什么是n-1

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bitcarmanlee/article/details/87102314

1.相关的数学符号

为了说明上述问题,先定义如下数学符号
总体的均值为 μ \mu
总体的方差为 σ 2 \sigma^2
样本为随机变量 x 1 , x 2 ,   , x n x_1, x_2, \cdots, x_n
样本的均值 x ˉ \bar x
样本的方差 s 2 s^2

2.样本方差的定义

在各种概率统计的教材中,都有样本方差的定义:
s 2 = 1 n 1 i = 1 n ( x i x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n(x_i - \bar x)^2
大家第一眼看到这个公式估计都会有疑问:为什么分母是n-1而不是n?教科书上的解释也很清楚但也很简单:样本方差中分母为n-1的目的是为了让方差的估计是无偏估计(unbiased estimator)。那么问题在于:
为什么分母为n-1的时候方差的估计是无偏估计?
从数学公式上说,要证明方差的估计是无偏估计,即
E ( s 2 ) = σ 2 E(s^2) = \sigma^2

3.公式推导

下面对公式进行一下简单推导

s 2 = 1 n i = 1 n ( x i x ˉ ) 2 = 1 n i = 1 n ( ( x i μ ) 2 ( μ x ˉ ) ) 2 = 1 n i = 1 n ( x i μ ) 2 2 n i = 1 n ( x i μ ) ( μ x ˉ ) + 1 n i = 1 n ( μ x ˉ ) 2 = 1 n i = 1 n ( x i μ ) 2 2 ( x ˉ μ ) ( μ x ˉ ) + ( μ x ˉ ) 2 = 1 n i = 1 n ( x i μ ) 2 ( μ x ˉ ) 2 1 n i = 1 n ( x i μ ) 2 \begin{aligned} s^2 & = \frac{1}{n} \sum_{i=1}^n(x_i - \bar x)^2 = \frac{1}{n} \sum_{i=1}^n\left((x_i - \mu)^2 - (\mu - \bar x) \right) ^2 \\ & = \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 - \frac{2}{n} \sum_{i=1}^n(x_i - \mu)(\mu - \bar x) + \frac{1}{n} \sum_{i=1}^n(\mu - \bar x)^2 \\ & = \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 - 2(\bar x - \mu)(\mu - \bar x) + (\mu - \bar x)^2 \\ & = \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 - (\mu - \bar x)^2 \\ & \leq \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 \end{aligned}

从上面的推导可以看出,只有当 x ˉ = μ \bar x = \mu 时,等号才成立。否则一定有
s 2 = 1 n i = 1 n ( x i x ˉ ) 2 < 1 n i = 1 n ( x i μ ) 2 s^2 = \frac{1}{n} \sum_{i=1}^n(x_i - \bar x)^2 \lt \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2

在上述的不等式中, 1 n i = 1 n ( x i μ ) 2 \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 是真正的方差。但是一般情况下,我们不知道整体的均值是多少,所以会通过样本的均值去代替整体的均值。从上面的推导过程来看,如果直接用样本的均值代替整体均值,对方差进行估计的时候会是有偏估计,会使估计的方差比真正的方差偏小。为了得到无偏估计的方差,所以要对上面的方差计算公式进行修正。最后修正的公式即为:
s 2 = 1 n 1 i = 1 n ( x i x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n(x_i - \bar x)^2

4.为什么修正以后的分母是n-1

由前面的推导可知
E ( s 2 ) = E ( 1 n i = 1 n ( x i x ˉ ) 2 ) = E [ 1 n i = 1 n ( x i ) 2 2 n i = 1 n x i x ˉ + 1 n i = 1 n ( x ˉ ) 2 ] = E [ 1 n i = 1 n ( x i ) 2 x ˉ 2 ] = E [ 1 n i = 1 n ( x i ) 2 ] E ( x ˉ 2 ) = E ( x i 2 ) E ( x ˉ 2 ) = D ( x i 2 ) + ( E x i ) 2 ( D ( x ˉ 2 ) + ( E x ˉ ) 2 ) \begin{aligned} E(s^2) &= E\left(\frac{1}{n} \sum_{i=1}^n(x_i - \bar x)^2 \right) \\ & = E \left[ \frac{1}{n} \sum_{i=1}^n (x_i)^2 - \frac{2}{n} \sum_{i=1}^n x_i \bar x + \frac{1}{n} \sum_{i=1}^n (\bar x)^2 \right] \\ & = E \left[ \frac{1}{n} \sum_{i=1}^n (x_i)^2 - \bar x ^ 2 \right] \\ & = E \left[ \frac{1}{n} \sum_{i=1}^n (x_i)^2 \right] - E (\bar x ^2) \\ & = E (x_i ^ 2) - E (\bar x ^ 2) \\ & = D(x_i ^ 2) + (Ex_i)^2 - \left( D(\bar x^2) + (E\bar x)^2 \right) \end{aligned}
容易有如下结论
E ( x ˉ ) = x ˉ = E ( x i ) , D ( x ˉ ) = 1 n D [ x ] ( i = 1 , 2 ,   , n ) E(\bar x) = \bar x = E(x_i), D(\bar x) = \frac{1}{n}D[x](i = 1, 2, \cdots, n)
继续对上面式子处理可知:
E ( s 2 ) = D ( x ) 1 n D ( x ) = n 1 n D ( x ) = n 1 n σ 2 E(s^2) = D(x) - \frac{1}{n}D(x) = \frac{n-1}{n}D(x) = \frac{n-1}{n} \sigma ^ 2

所以有:
n n 1 E ( s 2 ) = n n 1 × n 1 n D ( x ) = σ 2 \frac{n}{n-1} E(s^2) = \frac{n}{n-1} \times \frac{n-1}{n}D(x) = \sigma ^ 2
最后可知样本方差修正以后的公式为:
s 2 = n n 1 ( 1 n i = 1 n ( x i x ˉ ) 2 ) = 1 n 1 i = 1 n ( x i x ˉ ) 2 \begin{aligned} s^2 & = \frac{n}{n-1} \left( \frac{1}{n} \sum_{i=1}^n(x_i - \bar x)^2 \right ) \\ & = \frac{1}{n-1} \sum_{i=1}^n(x_i - \bar x)^2 \end{aligned}

猜你喜欢

转载自blog.csdn.net/bitcarmanlee/article/details/87102314