2020年春季学期信号与系统课程作业参考答案-第十次作业

第十次作业参考答案
 


 

01第一题


第一小题中的求解除了(14)(15)小题之外,其他的各题都可以在MATLAB中使用MATLAB的符号计算帮助求解,一边检查求解的结果正确性。
使用MATLAB求解第一小题可以参见下面的链接:


求解:

(1)
L [ 1 e a t ] = 1 s 1 s + a = a s ( s + a ) L\left[ {1 - e^{ - at} } \right] = {1 \over s} - {1 \over {s + a}} = {a \over {s\left( {s + a} \right)}}

(2)
L [ sin ( t ) + 2 cos ( t ) ] = 1 s 2 + 1 + 2 s s 2 + 1 = 2 s + 1 s 2 + 1 L\left[ {\sin \left( t \right) + 2\cos \left( t \right)} \right] = {1 \over {s^2 + 1}} + {{2s} \over {s^2 + 1}} = {{2s + 1} \over {s^2 + 1}}

(3)
L [ t e 2 t ] = 1 ( s + 2 ) 2 L\left[ {t \cdot e^{ - 2t} } \right] = {1 \over {\left( {s + 2} \right)^2 }}

(4) 由:
L [ sin ( 2 t ) ] = 2 s 4 + 4 L\left[ {\sin \left( {2t} \right)} \right] = {2 \over {s^4 + 4}}
再根据s域平移性质,可以得到:

L [ e t sin ( 2 t ) ] = 2 ( s + 1 ) 2 + 4 = 2 s 2 + 2 s + 5 L\left[ {e^{ - t} \cdot\sin \left( {2t} \right)} \right] = {2 \over {\left( {s + 1} \right)^2 + 4}} = {2 \over {s^2 + 2s + 5}}

(5) 因为
L [ t n ] = n ! s n + 1 L\left[ {t^n } \right] = {{n!} \over {s^{n + 1} }}

所以: L [ 1 + 2 t ] = 1 s + 2 s 2 = s + 2 s 2 L\left[ {1 + 2t} \right] = {1 \over s} + {2 \over {s^2 }} = {{s + 2} \over {s^2 }}

再由s域平移性质,可得: L [ ( 1 + 2 t ) e t ] = s + 3 ( s + 1 ) 2 L\left[ {\left( {1 + 2t} \right) \cdot e^{ - t} } \right] = {{s + 3} \over {\left( {s + 1} \right)^2 }}

(6) L [ 1 cos ( α t ) ] = 1 s s s 2 + α 2 L\left[ {1 - \cos \left( {\alpha t} \right)} \right] = {1 \over s} - {s \over {s^2 + \alpha ^2 }}

再由s域平移性质,可得: L { [ 1 cos ( α t ) ] e β t } = 1 s + β s + β ( s + β ) 2 + α 2 L\left\{ {\left[ {1 - \cos \left( {\alpha t} \right)} \right]e^{ - \beta t} } \right\} = {1 \over {s + \beta }} - {{s + \beta } \over {\left( {s + \beta } \right)^2 + \alpha ^2 }}

(7) L [ t 2 + 2 t ] = 2 s 3 + 2 s 2 = 2 s + 2 s 3 L\left[ {t^2 + 2t} \right] = {2 \over {s^3 }} + {2 \over {s^2 }} = {{2s + 2} \over {s^3 }}

(8) L [ 2 δ ( t ) 3 e 7 t ] = 2 3 s + 7 L\left[ {2\delta \left( t \right) - 3e^{ - 7t} } \right] = 2 - {3 \over {s + 7}}

(9) L [ sinh ( β t ) ] = β s 2 β 2 L\left[ {\sinh \left( {\beta t} \right)} \right] = {\beta \over {s^2 - \beta ^2 }}

再由s域的平移性质,可得: L [ e α t sinh ( β t ) ] = β ( s + α ) 2 β 2 L\left[ {e^{ - \alpha t} \sinh \left( {\beta t} \right)} \right] = {\beta \over {\left( {s + \alpha } \right)^2 - \beta ^2 }}

(10) 因为 cos 2 ( Ω t ) = 1 2 + 1 2 cos ( 2 Ω t ) \cos ^2 \left( {\Omega t} \right) = {1 \over 2} + {1 \over 2}\cos \left( {2\Omega t} \right)

所以: L [ cos 2 ( Ω t ) ] = 1 2 s + 1 2 s s 2 + 4 Ω 2 = 1 2 ( 1 s + s s 2 + 4 Ω 2 ) L\left[ {\cos ^2 \left( {\Omega t} \right)} \right] = {1 \over {2s}} + {1 \over 2} \cdot {s \over {s^2 + 4\Omega ^2 }} = {1 \over 2}\left( {{1 \over s} + {s \over {s^2 + 4\Omega ^2 }}} \right)

(11)
L [ 1 β α ( e α t e β t ) ] = 1 β α ( 1 s + α 1 s + β ) = 1 ( s + α ) ( s + β ) L\left[ {{1 \over {\beta - \alpha }}\left( {e^{ - \alpha t} - e^{ - \beta t} } \right)} \right] = {1 \over {\beta - \alpha }}\left( {{1 \over {s + \alpha }} - {1 \over {s + \beta }}} \right) = {1 \over {\left( {s + \alpha } \right)\left( {s + \beta } \right)}}

(12) 由于: L [ e t cos ( ω t ) ] = s + 1 ( s + 1 ) 2 + ω 2 L\left[ {e^{ - t} \cos \left( {\omega t} \right)} \right] = {{s + 1} \over {\left( {s + 1} \right)^2 + \omega ^2 }}

所以: L [ e ( t + a ) cos ( ω t ) ] = ( s + 1 ) e a ( s + 1 ) 2 + ω 2 L\left[ {e^{ - \left( {t + a} \right)} \cdot \cos \left( {\omega t} \right)} \right] = {{\left( {s + 1} \right)e^{ - a} } \over {\left( {s + 1} \right)^2 + \omega ^2 }}

(13) 因为:
t e ( t 2 ) u ( t 1 ) = e [ ( t 1 ) e ( t 1 ) + e ( t 1 ) ] u ( t 1 ) t \cdot e^{ - \left( {t - 2} \right)} u\left( {t - 1} \right) = e \cdot \left[ {\left( {t - 1} \right) \cdot e^{ - \left( {t - 1} \right)} + e^{ - \left( {t - 1} \right)} } \right] \cdot u\left( {t - 1} \right)

且: L [ ( t 1 ) e ( t 1 ) u ( t 1 ) ] = e s ( s + 1 ) 2 L\left[ {\left( {t - 1} \right)e^{ - \left( {t - 1} \right)} u\left( {t - 1} \right)} \right] = {{e^{ - s} } \over {\left( {s + 1} \right)^2 }} L [ e ( t 1 ) u ( t 1 ) ] = e s s + 1 L\left[ {e^{ - \left( {t - 1} \right)} u\left( {t - 1} \right)} \right] = {{e^{ - s} } \over {s + 1}}

所以:
L [ t e ( t 2 ) u ( t 1 ) ] = e [ 1 ( s + 1 ) 2 + 1 s + 1 ] e s = ( s + 2 ) e ( s 1 ) ( s + 1 ) 2 L\left[ {t \cdot e^{ - \left( {t - 2} \right)} u\left( {t - 1} \right)} \right] = e \cdot \left[ {{1 \over {\left( {s + 1} \right)^2 }} + {1 \over {s + 1}}} \right] \cdot e^{ - s} = {{\left( {s + 2} \right)e^{ - \left( {s - 1} \right)} } \over {\left( {s + 1} \right)^2 }}

(14) 由拉普拉斯变换的s域平移特性: L [ e t f ( t ) ] = F ( s + 1 ) L\left[ {e^{ - t} f\left( t \right)} \right] = F\left( {s + 1} \right)
由尺度变换性质,得到:
L [ e t a f ( t a ) ] = a F ( a s + 1 ) L\left[ {e^{ - {t \over a}} f\left( {{t \over a}} \right)} \right] = aF\left( {as + 1} \right)

(15) 由拉普拉斯变换的尺度特性: L [ f ( t a ) ] = a F ( a s ) L\left[ {f\left( {{t \over a}} \right)} \right] = aF\left( {as} \right)

再由s域平移性质,可得: L [ e a t f ( t a ) ] = a F [ a ( s + a ) ] = a F ( a s + a 2 ) L\left[ {e^{ - at} f\left( {{t \over a}} \right)} \right] = aF\left[ {a\left( {s + a} \right)} \right] = aF\left( {as + a^2 } \right)

(16) 根据: cos 3 ( 3 t ) = cos ( 3 t ) 1 + cos ( 6 t ) 2 = 1 4 cos ( 9 t ) + 3 4 cos ( t ) \cos ^3 \left( {3t} \right) = \cos \left( {3t} \right)\cdot{{1 + \cos \left( {6t} \right)} \over 2} = {1 \over 4}\cos \left( {9t} \right) + {3 \over 4}\cos \left( t \right)

所以: L [ cos 3 ( 3 t ) ] = 1 4 s s 2 + 81 + 3 4 s s 2 + 9 L\left[ {\cos ^3 \left( {3t} \right)} \right] = {1 \over 4} \cdot {s \over {s^2 + 81}} + {3 \over 4} \cdot {s \over {s^2 + 9}}

再根据s域的微分性质,可得: L [ t cos 3 ( 3 t ) ] = d d s ( 1 4 s s 2 + 81 + 3 4 s s 2 + 9 ) = 1 4 [ s 2 81 ( s 2 + 81 ) 2 + 3 s 2 27 ( s 2 + 9 ) 2 ] L\left[ {t \cdot \cos ^3 \left( {3t} \right)} \right] = - {d \over {ds}}\left( {{1 \over 4}{s \over {s^2 + 81}} + {3 \over 4} \cdot {s \over {s^2 + 9}}} \right) = {1 \over 4}\left[ {{{s^2 - 81} \over {\left( {s^2 + 81} \right)^2 }} + {{3s^2 - 27} \over {\left( {s^2 + 9} \right)^2 }}} \right]
(17) 根据: L [ cos ( 2 t ) ] = s s 2 + 4 L\left[ {\cos \left( {2t} \right)} \right] = {s \over {s^2 + 4}}

连续两次应用s域微分性质,可得: L [ t cos ( 2 t ) ] = s 2 4 ( s 2 + 4 ) 2 L\left[ {t \cdot \cos \left( {2t} \right)} \right] = {{s^2 - 4} \over {\left( {s^2 + 4} \right)^2 }}

L [ t 2 cos ( 2 t ) ] = 2 s 2 24 s ( s 2 + 4 ) 3 L\left[ {t^2 \cdot \cos \left( {2t} \right)} \right] = {{2s^2 - 24s} \over {\left( {s^2 + 4} \right)^3 }}

(18) 根据
L [ 1 e α t ] = 1 s 1 s + α L\left[ {1 - e^{ - \alpha t} } \right] = {1 \over s} - {1 \over {s + \alpha }}

再由s域的积分性质,可得:
L [ 1 t ( 1 e α t ) ] = s + ( 1 s 1 1 s 1 + α ) d s 1 = ln ( s + α ) ln s = ln ( s s + α ) L\left[ {{1 \over t}\left( {1 - e^{ - \alpha t} } \right)} \right] = \int_s^{ + \infty } {\left( {{1 \over {s_1 }} - {1 \over {s_1 + \alpha }}} \right)ds_1 } = \ln \left( {s + \alpha } \right) - \ln s = - \ln \left( {{s \over {s + \alpha }}} \right)

(19) 根据 L [ e 3 t e 5 t ] = 1 s + 3 1 s + 5 L\left[ {e^{ - 3t} - e^{ - 5t} } \right] = {1 \over {s + 3}} - {1 \over {s + 5}}

再由s域的积分性质可得:
L [ e 3 t e 5 t t ] = s + ( 1 s 1 + 3 1 s 1 + 5 ) d s 1 = ln ( s + 5 s + 3 ) L\left[ {{{e^{ - 3t} - e^{ - 5t} } \over t}} \right] = \int_s^{ + \infty } {\left( {{1 \over {s_1 + 3}} - {1 \over {s_1 + 5}}} \right)ds_1 } = \ln \left( {{{s + 5} \over {s + 3}}} \right)

(20) 根据: L [ sin ( α t ) ] = α s 2 + α 2 L\left[ {\sin \left( {\alpha t} \right)} \right] = {\alpha \over {s^2 + \alpha ^2 }}

再由s域的积分性质可得:
L [ sin ( α t ) t ] = s + α s 1 2 + α 2 d s 1 = s + 1 ( s 1 α ) 2 + 1 d ( s 1 α ) = π 2 arctan ( s α ) = arctan ( α s ) L\left[ {{{\sin \left( {\alpha t} \right)} \over t}} \right] = \int_s^{ + \infty } {{\alpha \over {s_1^2 + \alpha ^2 }}ds_1 } = \int_s^{ + \infty } {{1 \over {\left( {{{s_1 } \over \alpha }} \right)^2 + 1}}d\left( {{{s_1 } \over \alpha }} \right)} = {\pi \over 2} - \arctan \left( {{s \over \alpha }} \right) = \arctan \left( {{\alpha \over s}} \right)

02第二题



求解:

(1)解答:
X ( z ) = n = 0 ( 1 4 ) n z n = 4 z 4 z 1 = z z 1 4 ,    z > 1 4 X\left( z \right) = \sum\limits_{n = 0}^\infty {\left( {{1 \over 4}} \right)^n z^{ - n} } = {{4z} \over {4z - 1}} = {z \over {z - {1 \over 4}}},\,\,\left| z \right| > {1 \over 4}

(2)解答:
X ( z ) = n = 0 ( 1 3 ) n z n = z z + 1 3 = 3 z 3 z + 1 ,          z > 1 3 X\left( z \right) = \sum\limits_{n = 0}^\infty {\left( { - {1 \over 3}} \right)^n z^{ - n} } = {z \over {z + {1 \over 3}}} = {{3z} \over {3z + 1}},\;\;\;\;\left| z \right| > {1 \over 3}

(3)解答:
X ( z ) = n = 0 ( 1 2 ) n z n = 1 1 2 z ,      z < 1 2 X\left( z \right) = \sum\limits_{n = - \infty }^0 {\left( {{1 \over 2}} \right)^n z^{ - n} } = {1 \over {1 - 2z}},\,\,\,\,\left| z \right| < {1 \over 2}

(4)解答:
X ( z ) = n = 0 ( 1 2 ) n z n = 1 1 + 2 z ,       z < 1 2 X\left( z \right) = \sum\limits_{n = - \infty }^0 {\left( { - {1 \over 2}} \right)^n z^{ - n} } = {1 \over {1 + 2z}},\,\,\,\,\,\left| z \right| < {1 \over 2}

(5)解答:
X ( z ) = n = 1 ( 1 6 ) n 1 z n u [ n 1 ] = 36 z 6 z 1 ,      z < 1 6 X\left( z \right) = \sum\limits_{n = - \infty }^{ - 1} { - \left( {{1 \over 6}} \right)^{n - 1} z^{ - n} u\left[ { - n - 1} \right]} = {{36z} \over {6z - 1}},\,\,\,\,\left| z \right| < {1 \over 6}

(6)解答:
X ( z ) = 1 z 1 ,      z > 1 X\left( z \right) = {1 \over {z - 1}},\,\,\,\,\left| z \right| > 1

(7)解答:
X ( z ) = n = 0 3 ( 1 10 ) n z n = 1 ( 1 10 z ) 3 1 1 10 z = ( 10 z ) 3 1 ( 10 z ) 2 ( 10 z 1 ) ,       z > 0 X\left( z \right) = \sum\limits_{n = 0}^3 {\left( {{1 \over {10}}} \right)^n \cdot z^{ - n} = {{1 - \left( {{1 \over {10z}}} \right)^3 } \over {1 - {1 \over {10z}}}} = {{\left( {10z} \right)^3 - 1} \over {\left( {10z} \right)^2 \left( {10z - 1} \right)}},\,\,\,\,\,\left| z \right| > 0}

(8)解答:
X ( z ) = z z 1 5 + z z 1 6 = z ( 60 z 11 ) ( 5 z 1 ) ( 6 z 1 ) ,      z > 1 5 X\left( z \right) = {z \over {z - {1 \over 5}}} + {z \over {z - {1 \over 6}}} = {{z\left( {60z - 11} \right)} \over {\left( {5z - 1} \right) \cdot \left( {6z - 1} \right)}},\,\,\,\,\left| z \right| > {1 \over 5}

(9)解答:
X ( z ) = 1 1 2 z 8 = 2 z 8 1 2 z 8 ,      z > 0 X\left( z \right) = 1 - {1 \over 2}z^{ - 8} = {{2z^8 - 1} \over {2z^8 }},\,\,\,\,\left| z \right| > 0

03第三题


求双边序列 x [ n ] = ( 1 a ) n ,      a > 1 x\left[ n \right] = \left( {{1 \over a}} \right)^{\left| n \right|} ,\,\,\,\,\left| a \right| > 1
的z变换,并表明收敛于及绘制出零极点图。


求解:

将双边序列分成右边和左边序列,分别求出各自的Z变换。
x R [ n ] = ( 1 a ) n ,       n 0 ,        x L [ n ] = ( 1 a ) n = a n ,       n < 0 x_R \left[ n \right] = \left( {{1 \over a}} \right)^n ,\,\,\,\,\,n \ge 0,\,\,\,\,\,\,x_L \left[ n \right] = \left( {{1 \over a}} \right)^{ - n} = a^n ,\,\,\,\,\,n < 0

Z { x R [ n ] } = z z 1 a ,      z > 1 a Z\left\{ {x_R \left[ n \right]} \right\} = {z \over {z - {1 \over a}}},\,\,\,\,\left| z \right| > {1 \over a}

Z { x L [ n ] } = n = 1 a n z n = n = 1 z n a n Z\left\{ {x_L \left[ n \right]} \right\} = \sum\limits_{n = - \infty }^{ - 1} {a^n z^{ - n} } = \sum\limits_{n = 1}^\infty {z^n a^{ - n} } = n = 0 z n a n 1 = 1 1 z a 1 1 = z z a = \sum\limits_{n = 0}^\infty {z^n a^{ - n} } - 1 = {1 \over {1 - za^{ - 1} }} - 1 = {{ - z} \over {z - a}}

Z { x [ n ] } = Z { x R [ n ] + x L [ n ] } Z\left\{ {x\left[ n \right]} \right\} = Z\left\{ {x_R \left[ n \right] + x_L \left[ n \right]} \right\} = z z 1 a + z z a = ( 1 a 2 ) z a z 2 ( 1 + a 2 ) z + a = {z \over {z - {1 \over a}}} + {{ - z} \over {z - a}} = {{\left( {1 - a^2 } \right)z} \over {az^2 - \left( {1 + a^2 } \right)z + a}}

04第四题



求解:

(1)解答

L 1 ( 1 s + 2 ) = e 2 t ,      t 0 L^{ - 1} \left( {{1 \over {s + 2}}} \right) = e^{ - 2t} ,\,\,\,\,t \ge 0

(2)解答:
L 1 ( 4 2 s + 5 ) = L 1 ( 2 s + 5 2 ) = 2 e 5 2 t      t 1 L^{ - 1} \left( {{4 \over {2s + 5}}} \right) = L^{ - 1} \left( {{2 \over {s + {5 \over 2}}}} \right) = 2 \cdot e^{ - {5 \over 2}t} \,\,\,\,t \ge 1

(3)解答:
2 s ( 2 s + 3 ) = 2 3 s + 2 3 s + 3 2 {2 \over {s\left( {2s + 3} \right)}} = {{{2 \over 3}} \over s} + {{ - {2 \over 3}} \over {s + {3 \over 2}}}

L 1 ( 2 3 s + 2 3 s + 3 2 ) = 2 3 u ( t ) 2 3 e 3 2 t . u ( t ) L^{ - 1} \left( {{{{2 \over 3}} \over s} + {{ - {2 \over 3}} \over {s + {3 \over 2}}}} \right) = {2 \over 3}u\left( t \right) - {2 \over 3}e^{ - {3 \over 2}t} .u\left( t \right)

(4)解答:
1 s ( s 2 + 3 ) = 1 3 s + 1 3 s s 2 + 3 {1 \over {s\left( {s^2 + 3} \right)}} = {{{1 \over 3}} \over s} + {{ - {1 \over 3}s} \over {s^2 + 3}}

L 1 ( 1 3 s 1 3 s s 2 + 3 ) = 1 3 u ( t ) 1 3 cos 3 t u ( t ) L^{ - 1} \left( {{{{1 \over 3}} \over s} - {{{1 \over 3}s} \over {s^2 + 3}}} \right) = {1 \over 3}u\left( t \right) - {1 \over 3}\cos \sqrt 3 t \cdot u\left( t \right)

(5)解答:

3 ( s + 4 ) ( s + 3 ) = 3 s + 3 3 s + 4 {3 \over {\left( {s + 4} \right)\left( {s + 3} \right)}} = {3 \over {s + 3}} - {3 \over {s + 4}}

L 1 [ 3 s + 3 3 s + 4 ] = 3 e 3 t 3 e 4 t ,      t 0 L^{ - 1} \left[ {{3 \over {s + 3}} - {3 \over {s + 4}}} \right] = 3e^{ - 3t} - 3e^{ - 4t} ,\,\,\,\,t \ge 0

(6)解答:
3 s ( s + 4 ) ( s + 3 ) = 9 s + 3 + 12 s + 4 {{3s} \over {\left( {s + 4} \right)\left( {s + 3} \right)}} = {{ - 9} \over {s + 3}} + {{12} \over {s + 4}}

L 1 ( 9 s + 3 + 12 s + 4 ) = 9 e 3 t + 12 e 4 t ,      t 0 L^{ - 1} \left( {{{ - 9} \over {s + 3}} + {{12} \over {s + 4}}} \right) = - 9e^{ - 3t} + 12e^{ - 4t} ,\,\,\,\,t \ge 0

(7)解答:
L 1 ( 1 s 2 + 1 + 1 ) = sin t + δ ( t ) ,      t 0 L^{ - 1} \left( {{1 \over {s^2 + 1}} + 1} \right) = \sin t + \delta \left( t \right),\,\,\,\,t \ge 0

(8)解答:
1 s 2 3 s + 2 = 1 s 1 + 1 s 2 {1 \over {s^2 - 3s + 2}} = {{ - 1} \over {s - 1}} + {1 \over {s - 2}}

L 1 ( 1 s 1 + 1 s 2 ) = e t + e 2 t ,      t 0 L^{ - 1} \left( {{{ - 1} \over {s - 1}} + {1 \over {s - 2}}} \right) = - e^t + e^{2t} ,\,\,\,\,t \ge 0

(9)解答:
1 s ( R C s + 1 ) = 1 s 1 s + 1 R C {1 \over {s\left( {RCs + 1} \right)}} = {1 \over s} - {1 \over {s + {1 \over {RC}}}}

L 1 [ 1 s 1 s + 1 R C ] = 1 e 1 R C t ,      t 0 L^{ - 1} \left[ {{1 \over s} - {1 \over {s + {1 \over {RC}}}}} \right] = 1 - e^{ - {1 \over {RC}}t} ,\,\,\,\,t \ge 0

(10)解答:
1 R C s s ( 1 + R C s ) = 1 s 2 s + 1 R C {{1 - RCs} \over {s\left( {1 + RCs} \right)}} = {1 \over s} - {2 \over {s + {1 \over {RC}}}}

L 1 ( 1 s 2 s + 1 R C ) = 1 2 e t R C ,      t 0 L^{ - 1} \left( {{1 \over s} - {2 \over {s + {1 \over {RC}}}}} \right) = 1 - 2e^{ - {t \over {RC}}} ,\,\,\,\,t \ge 0

(11)解答:
ω ( s 2 + ω 2 ) 1 ( R C s + 1 ) {\omega \over {\left( {s^2 + \omega ^2 } \right)}} \cdot {1 \over {\left( {RCs + 1} \right)}}

ω s 2 + ω 2 1 R C s + 1 R C = m s + n s 2 + ω 2 l s + 1 R C {\omega \over {s^2 + \omega ^2 }} \cdot {{{1 \over {RC}}} \over {s + {1 \over {RC}}}} = {{ms + n} \over {s^2 + \omega ^2 }} \cdot {l \over {s + {1 \over {RC}}}}

m s 2 + m R C s + n s + n R C + l s 2 + l ω 2 ( s 2 + ω 2 ) ( s + 1 R C ) = ω R C ( s 2 + ω 2 ) ( s + 1 R C ) {{ms^2 + {m \over {RC}}s + ns + {n \over {RC}} + ls^2 + l\omega ^2 } \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}} = {{{\omega \over {RC}}} \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}}

( m + l ) s 2 + ( n + m R C ) s + l ω 2 ( s 2 + ω 2 ) ( s + 1 R C ) = ω R C ( s 2 + ω 2 ) ( s + 1 R C ) {{\left( {m + l} \right)s^2 + \left( {n + {m \over {RC}}} \right)s + l\omega ^2 } \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}} = {{{\omega \over {RC}}} \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}}

KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m + l = 0} n + m R C = 0 {n + {m \over {RC}} = 0} n R C + l ω 2 = ω R C {{n \over {RC}} + l\omega ^2 = {\omega \over {RC}}}

KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m = {{ - R… n = ω 1 + ( R C ω ) 2 {n = {\omega \over {1 + \left( {RC\omega } \right)^2 }}} l = R C ω 1 + ( R C ω ) 2 {l = {{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}}

ω s 2 + ω 2 1 R C s + 1 = R C ω 1 + ( R C ω ) 2 s + ω 1 + ( R C ω ) 2 s 2 + ω 2 + R C ω 1 + ( R C ω ) 2 s + 1 R C {\omega \over {s^2 + \omega ^2 }} \cdot {1 \over {RCs + 1}} = {{{{ - RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}s + {\omega \over {1 + \left( {RC\omega } \right)^2 }}} \over {s^2 + \omega ^2 }} + {{{{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}} \over {s + {1 \over {RC}}}}

R C 1 + ( R C ω ) 2 cos ( ω t ) + 1 1 + ( R C ω ) 2 sin ( ω t ) + R C ω 1 + ( R C ω ) 2 e t R C ,       t 0 {{ - RC} \over {1 + \left( {RC\omega } \right)^2 }}\cos \left( {\omega t} \right) + {1 \over {1 + \left( {RC\omega } \right)^2 }}\sin \left( {\omega t} \right) + {{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}e^{ - {t \over {RC}}} ,\,\,\,\,\,t \ge 0

(12)解答:
4 s + 5 s 2 + 5 s + 6 = 4 s + 5 ( s + 2 ) ( s + 3 ) = 3 s + 2 + 7 s + 3 {{4s + 5} \over {s^2 + 5s + 6}} = {{4s + 5} \over {\left( {s + 2} \right)\left( {s + 3} \right)}} = {{ - 3} \over {s + 2}} + {7 \over {s + 3}}

L 1 ( 4 s + 5 s 2 + 5 s + 6 ) = e 2 t + 7 e 3 t ,      t 0 L^{ - 1} \left( {{{4s + 5} \over {s^2 + 5s + 6}}} \right) = - e^{ - 2t} + 7e^{ - 3t} ,\,\,\,\,t \ge 0

(13)解答:
100 ( s + 50 ) s 2 + 201 s + 200 = 4900 199 s + 1 + 15000 199 s + 200 {{100\left( {s + 50} \right)} \over {s^2 + 201s + 200}} = {{{{4900} \over {199}}} \over {s + 1}} + {{{{15000} \over {199}}} \over {s + 200}}

L 1 ( 100 ( s + 50 ) s 2 + 201 s + 200 ) = 4900 199 e t + 15000 199 e 200 t ,       t 0 L^{ - 1} \left( {{{100\left( {s + 50} \right)} \over {s^2 + 201s + 200}}} \right) = {{4900} \over {199}}e^{ - t} + {{15000} \over {199}}e^{ - 200t} ,\,\,\,\,\,t \ge 0

(14)解答:
s + 3 ( s + 1 ) 3 ( s + 2 ) = A ( s + 1 ) 3 + B ( s + 1 ) 2 + C s + 1 + D s + 2 {{s + 3} \over {\left( {s + 1} \right)^3 \cdot \left( {s + 2} \right)}} = {A \over {\left( {s + 1} \right)^3 }} + {B \over {\left( {s + 1} \right)^2 }} + {C \over {s + 1}} + {D \over {s + 2}}

D = s + 3 ( s + 1 ) 3 s = 2 = 1 D = \left. {{{s + 3} \over {\left( {s + 1} \right)^3 }}} \right|_{s = - 2} = - 1

A = s + 3 s + 2 s = 1 = 2 A = \left. {{{s + 3} \over {s + 2}}} \right|_{s = - 1} = 2

B = d d s ( s + 3 s + 2 ) s = 1 = 1 s + 2 s + 3 ( s + 2 ) 2 s = 1 = 1 B = \left. {{d \over {ds}}\left( {{{s + 3} \over {s + 2}}} \right)} \right|_{s = - 1} = \left. {{1 \over {s + 2}} - {{s + 3} \over {\left( {s + 2} \right)^2 }}} \right|_{s = - 1} = - 1

C = 1 2 d 2 d s 2 ( s + 3 s + 2 ) s = 1 = 1 2 2 ( s + 3 ) ( s + 2 ) 3 2 ( s + 2 ) 2 s = 1 = 1 C = \left. {{1 \over 2} \cdot {{d^2 } \over {ds^2 }}\left( {{{s + 3} \over {s + 2}}} \right)} \right|_{s = - 1} = \left. {{1 \over 2}{{2\left( {s + 3} \right)} \over {\left( {s + 2} \right)^3 }} - {2 \over {\left( {s + 2} \right)^2 }}} \right|_{s = - 1} = 1

L 1 ( s + 3 ( s + 1 ) 3 ( s + 2 ) ) = t 2 e t t e t + e t e 2 t ,       t 0 L^{ - 1} \left( {{{s + 3} \over {\left( {s + 1} \right)^3 \left( {s + 2} \right)}}} \right) = t^2 e^{ - t} - te^{ - t} + e^{ - t} - e^{ - 2t} ,\,\,\,\,\,t \ge 0

05第五题


求下列函数的拉普拉斯逆变换:
F ( s ) = ln ( s s + 9 ) F\left( s \right) = \ln \left( {{s \over {s + 9}}} \right)


求解:

本题应用到Laplace变换的一个性质,如下:
F ( s ) = 0 f ( t ) e s t d t F\left( s \right) = \int_{0_ - }^\infty {f\left( t \right)e^{ - st} dt} F ( s ) = d d s 0 f ( t ) e s t d t = 0 t f ( t ) e s t d t F'\left( s \right) = {d \over {ds}}\int_{0_ - }^\infty {f\left( t \right)e^{ - st} dt} = \int_{0_ - }^\infty { - t \cdot f\left( t \right)e^{ - st} dt} t f ( t ) = L 1 [ d F ( s ) d s ] t \cdot f\left( t \right) = - L^{ - 1} \left[ {{{dF\left( s \right)} \over {ds}}} \right]

f ( t ) = L 1 [ ln ( s s + 9 ) ] f\left( t \right) = L^{ - 1} \left[ {\ln \left( {{s \over {s + 9}}} \right)} \right]

t f ( t ) = L 1 [ d d s ln ( s s + 9 ) ] = L 1 ( 1 s + 9 + 1 s ) = 1 e 9 t ,      t 0 - t \cdot f\left( t \right) = L^{ - 1} \left[ {{d \over {ds}}\ln \left( {{s \over {s + 9}}} \right)} \right] = L^{ - 1} \left( { - {1 \over {s + 9}} + {1 \over s}} \right)\, = 1 - e^{ - 9t} ,\,\,\,\,t \ge 0

f ( t ) = 1 t + 1 t e 9 t ,      t 0 f\left( t \right) = {{ - 1} \over t} + {1 \over t}e^{ - 9t} ,\,\,\,\,t \ge 0

如果使用MATLAB进行求解,结果如下:

>>ilaplace(log(s/(s+9)))
ans=(exp(-9*t)-1)/t

06第六题



求解:

(1) x [ n ] = δ [ n ] x\left[ n \right] = \delta \left[ n \right]
(2) x [ n ] = δ [ n + 3 ] x\left[ n \right] = \delta \left[ {n + 3} \right]
(3) x [ n ] = δ [ n 1 ] x\left[ n \right] = \delta \left[ {n - 1} \right]
(4) x [ n ] = 2 δ [ n 2 ] + δ [ n ] + 2 δ [ n + 1 ] x\left[ n \right] = - 2\delta \left[ {n - 2} \right] + \delta \left[ n \right] + 2\delta \left[ {n + 1} \right]
(5) x [ n ] = a n u [ n ] x\left[ n \right] = a^n u\left[ n \right]
(6) x [ n ] = a n u [ n 1 ] x\left[ n \right] = - a^n u\left[ { - n - 1} \right]

07第七题



求解:

(1)求解:
X ( z ) = z z + 0.5 X\left( z \right) = {z \over {z + 0.5}}

由于 z > 5 \left| z \right| > 5 ,所以序列是右边序列,因此序列为: x [ n ] = ( 0.5 ) n u [ n ] x\left[ n \right] = \left( { - 0.5} \right)^n u\left[ n \right]

(2)求解:
X ( z ) z = z 0.5 ( z + 1 4 ) ( z + 1 2 ) = 3 z + 1 4 + 4 z + 1 2 {{X\left( z \right)} \over z} = {{z - 0.5} \over {\left( {z + {1 \over 4}} \right) \cdot \left( {z + {1 \over 2}} \right)}} = {{ - 3} \over {z + {1 \over 4}}} + {4 \over {z + {1 \over 2}}}
由于 z > 5 \left| z \right| > 5 ,所以序列是右边序列,因此序列为: x [ n ] = [ 3 ( 1 4 ) n + 4 ( 1 2 ) n ] u [ n ] x\left[ n \right] = \left[ { - 3\left( {{{ - 1} \over 4}} \right)^n + 4\left( {{{ - 1} \over 2}} \right)^n } \right] \cdot u\left[ n \right]

= ( 1 4 ) n ( 3 + 2 n + 2 ) u [ n ] = \left( { - {1 \over 4}} \right)^n \left( { - 3 + 2^{n + 2} } \right) \cdot u\left[ n \right]

(3)求解:
X ( z ) = 1 1 2 z 1 1 1 4 z 2 = z z + 1 2 X\left( z \right) = {{1 - {1 \over 2}z^{ - 1} } \over {1 - {1 \over 4}z^{ - 2} }} = {z \over {z + {1 \over 2}}} z > 1 2        \left| z \right| > {1 \over 2}\;\;\; x [ n ] = ( 1 2 ) n u [ n ] x\left[ n \right] = \left( { - {1 \over 2}} \right)^n \cdot u\left[ n \right]

(4)求解:
X ( z ) z = z a z ( 1 a z ) = 1 a ( z a ) z ( z 1 a ) = a z + a 1 a z 1 a {{X\left( z \right)} \over z} = {{z - a} \over {z\left( {1 - az} \right)}} = {{ - {1 \over a}\left( {z - a} \right)} \over {z\left( {z - {1 \over a}} \right)}} = {{ - a} \over z} + {{a - {1 \over a}} \over {z - {1 \over a}}} z > 1 a , \left| z \right| > \left| {{1 \over a}} \right|, x [ n ] = a δ [ n ] + ( a 1 a ) ( 1 a ) n u [ n ] x\left[ n \right] = - a\delta \left[ n \right] + \left( {a - {1 \over a}} \right) \cdot \left( {{1 \over a}} \right)^n \cdot u\left[ n \right]

08第八题


利用三种方法求解下面 X ( z ) X\left( z \right) 的你变换 x [ n ] x\left[ n \right]

X ( z ) = 10 z ( z 1 ) ( z 2 ) ,      ( z > 2 ) X\left( z \right) = {{10z} \over {\left( {z - 1} \right)\left( {z - 2} \right)}},\,\,\,\,\left( {\left| z \right| > 2} \right)


求解:

方法1:围线积分方法:
因为 z > 2 \left| z \right| > 2 ,所以信号为右边序列。
x [ n ] = 1 2 π j C X ( z ) z n 1 d z = 1 2 π j C 10 z n ( z 1 ) ( z 2 ) d z x\left[ n \right] = {1 \over {2\pi j}}\oint\limits_C {X\left( z \right) \cdot z^{n - 1} dz = {1 \over {2\pi j}}\oint\limits_C {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}dz} }

x [ n ] = m R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = z m x\left[ n \right] = \sum\limits_m^{} {{\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]} _{z = z_m }

R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = 1 = 10 {\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 1} = - 10 R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = 2 = 10 2 n {\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 2} = 10 \cdot 2^n

x [ n ] = [ 10 + 10 2 n ] u [ n ] x\left[ n \right] = \left[ { - 10 + 10 \cdot 2^n } \right] \cdot u\left[ n \right]

方法2:长除法:

x [ n ] = 10 z 1 + 30 z 2 + 70 z 3 + x\left[ n \right] = 10z^{ - 1} + 30z^{ - 2} + 70z^{ - 3} + \cdots = 10 ( 2 n 1 ) u [ n ] = 10\left( {2^n - 1} \right) \cdot u\left[ n \right]

>> deconv([10,0,0,0,0,0,0,0,0],[1,-3,2])'
ans=10 30 70 150 310 630 1270

方法3:部分因式分解法:
X ( z ) z = 10 ( z 1 ) ( z 2 ) = 10 z 1 + 10 z 2 {{X\left( z \right)} \over z} = {{10} \over {\left( {z - 1} \right)\left( {z - 2} \right)}} = {{ - 10} \over {z - 1}} + {{10} \over {z - 2}} X ( z ) = 10 z z 1 + 10 z z 2 X\left( z \right) = {{ - 10z} \over {z - 1}} + {{10z} \over {z - 2}}

x [ n ] = 10 u [ n ] + 10 2 n u [ n ] x\left[ n \right] = - 10 \cdot u\left[ n \right] + 10 \cdot 2^n u\left[ n \right]

使用MATLAB对应的变换命令:

>>iztrans(10*z/(z-1)/(z-2))
ans=10*2^n-10

09第九题



求解:

(1)求解:
X ( z ) z = 10 z ( z 0.5 ) ( z 0.25 ) = 20 z 0.5 + 10 z 0.25 {{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 0.5} \right)\left( {z - 0.25} \right)}} = {{20} \over {z - 0.5}} + {{ - 10} \over {z - 0.25}} X ( z ) = 20 z z 0.5 + 10 z z 0.25 X\left( z \right) = {{20z} \over {z - 0.5}} + {{ - 10z} \over {z - 0.25}} z > 0.5 \left| z \right| > 0.5 x [ n ] = [ 20 ( 0.5 ) n 10 ( 0.25 ) n ] u [ n ] x\left[ n \right] = \left[ {20 \cdot \left( {0.5} \right)^n - 10 \cdot \left( {0.25} \right)^n } \right] \cdot u\left[ n \right]

>>iztrans(10/(1-0.5/z)/(1-0.25/z))'
ans=20*(1/2)^n-10*(1/4)^n

(2)求解:
X ( z ) z = 10 z ( z 1 ) ( z + 1 ) = 5 z 1 + 5 z + 1 {{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 1} \right)\left( {z + 1} \right)}} = {5 \over {z - 1}} + {5 \over {z + 1}} X ( z ) = 5 z z 1 + 5 z z + 1 X\left( z \right) = {{5z} \over {z - 1}} + {{5z} \over {z + 1}} z > 1 \left| z \right| > 1 x [ n ] = 5 [ 1 + ( 1 ) n ] u [ n ] x\left[ n \right] = 5 \cdot \left[ {1 + \left( { - 1} \right)^n } \right] \cdot u\left[ n \right]

>>iztrans(10*z*z/(z-1)/(z+1))'
ans=5*(-1)^n+5

(3)求解: 根据正弦、余弦单边序列的z变换:
Z [ cos ( ω 0 n ) u [ n ] ] = z ( z cos ω 0 ) z 2 2 z cos ω 0 + 1 Z\left[ {\cos \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\left( {z - \cos \omega _0 } \right)} \over {z^2 - 2z\cos \omega _0 + 1}} Z [ sin ( ω 0 n ) u [ n ] ] = z sin ω 0 z 2 2 z cos ω 0 + 1 Z\left[ {\sin \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\sin \omega _0 } \over {z^2 - 2z\cos \omega _0 + 1}}

X ( z ) = z 2 + z z 2 2 z cos ω + 1 X\left( z \right) = {{z^2 + z} \over {z^2 - 2z\cos \omega + 1}} = z ( z cos ω ) z 2 2 z cos ω + 1 + 1 + cos ω sin ω z sin ω z 2 2 z cos ω + 1 = {{z\left( {z - \cos \omega } \right)} \over {z^2 - 2z\cos \omega + 1}} + {{1 + \cos \omega } \over {\sin \omega }}{{z\sin \omega } \over {z^2 - 2z\cos \omega + 1}}
x [ n ] = ( cos ω n + 1 + cos ω sin ω sin ω n ) u [ n ] x\left[ n \right] = \left( {\cos \omega n + {{1 + \cos \omega } \over {\sin \omega }}\sin \omega n} \right) \cdot u\left[ n \right] = sin ( n ω ) + sin ( n + 1 ) ω sin ω u [ n ] = {{\sin \left( {n\omega } \right) + \sin \left( {n + 1} \right)\omega } \over {\sin \omega }} \cdot u\left[ n \right]

>>iztrans((1+1/z)/(1-2*z^-1*cos(w)+z^-2))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)
>>iztrans((z*z+z)/(z*z-2*z*cos(w)+1))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)

sin n ω ( cos ω + 1 ) sin ω cos n ω ( cos ω + 1 ) cos ω + cos n ω ( 2 cos + 1 ) cos ω {{\sin n\omega \left( {\cos \omega + 1} \right)} \over {\sin \omega }} - {{\cos n\omega \left( {\cos \omega + 1} \right)} \over {\cos \omega }} + {{\cos n\omega \left( {2\cos + 1} \right)} \over {\cos \omega }}
( sin n ω cos ω sin ω cos n ω ) ( cos ω + 1 ) + sin ω cos n ω ( 2 cos ω + 1 ) sin ω cos ω {{\left( {\sin n\omega \cdot \cos \omega - \sin \omega \cdot \cos n\omega } \right) \cdot \left( {\cos \omega + 1} \right) + \sin \omega \cdot \cos n\omega \cdot (2\cos \omega + 1)} \over {\sin \omega \cdot \cos \omega }}

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/106456413
今日推荐