信号与系统分析2022春季作业-参考答案:第七次作业

作业题目
目 录
Contents
参考答案
信号频谱分析
证明题
思考题
调制与解调
信号调制系统分析

  封面动图来自于: SHUTTERSTOCK网站

§00 业题目

  作业要求链接: 信号与系统2022春季学期第七次作业 : https://zhuoqing.blog.csdn.net/article/details/124014932

§01 考答案


1.1 信号频谱分析

1.1.1 求信号的频谱

  求解:

f ( t ) f\left( t \right) f(t)可以看成三角信号 f t ( t ) f_t \left( t \right) ft(t)与方波信号 f p ( t ) f_p \left( t \right) fp(t)的相乘。根据傅里叶变换时域乘积(频域卷积)定理, f ( t ) f\left( t \right) f(t)的频谱 F ( ω ) F\left( \omega \right) F(ω)为: F ( ω ) = 1 2 π F T ( ω ) ∗ F P ( ω ) F\left( \omega \right) = {1 \over {2\pi }}F_T \left( \omega \right) * F_P \left( \omega \right) F(ω)=2π1FT(ω)FP(ω)

  三角信号 f t ( t ) f_t \left( t \right) ft(t)的傅里叶变换 F T ( ω ) F_T \left( \omega \right) FT(ω)为:

F T ( ω ) = τ 1 S a 2 ( ω τ 1 2 ) F_T \left( \omega \right) = \tau _1 Sa^2 \left( { { {\omega \tau _1 } \over 2}} \right) FT(ω)=τ1Sa2(2ωτ1)

等腰三角脉冲信号与等宽的矩形脉冲信号的频谱相差“三个2”。

  下面求周期方波信号 f p ( t ) f_p \left( t \right) fp(t)的傅里叶变换。

  对于宽度为 τ \tau τ,高度为2的矩形脉冲信号 f 2 τ ( t ) f_{2\tau } \left( t \right) f2τ(t)的连续频谱 F 2 τ ( ω ) F_{2\tau } \left( \omega \right) F2τ(ω)为: F 2 τ ( ω ) = 2 τ S a ( ω τ ) F_{2\tau } \left( \omega \right) = 2\tau Sa\left( {\omega \tau } \right) F2τ(ω)=2τSa(ωτ)

  将 f 2 τ ( t ) f_{2\tau } \left( t \right) f2τ(t)安装周期 2 τ 2\tau 2τ进行周期延拓,形成周期信号 f 2 τ p ( t ) f_{2\tau p} \left( t \right) f2τp(t),它对应的傅里叶变换 F 2 τ P ( ω ) F_{2\tau P} \left( \omega \right) F2τP(ω) F 2 τ ( ω ) F_{2\tau } \left( \omega \right) F2τ(ω)进行离散化

F 2 τ P ( ω ) = π τ ∑ n = − ∞ ∞ 2 τ S a ( n ⋅ π τ ) δ ( ω − n ⋅ π τ ) F_{2\tau P} \left( \omega \right) = {\pi \over \tau }\sum\limits_{n = - \infty }^\infty {2\tau Sa\left( {n \cdot {\pi \over \tau }} \right)\delta \left( {\omega - n \cdot {\pi \over \tau }} \right)} F2τP(ω)=τπn=2τSa(nτπ)δ(ωnτπ)

  进行化简后为:

F 2 τ P ( ω ) = 2 π ∑ n = − ∞ ∞ S a ( n ⋅ π τ ) δ ( ω − n ⋅ π τ ) F_{2\tau P} \left( \omega \right) = 2\pi \sum\limits_{n = - \infty }^\infty {Sa\left( {n \cdot {\pi \over \tau }} \right)\delta \left( {\omega - n \cdot {\pi \over \tau }} \right)} F2τP(ω)=2πn=Sa(nτπ)δ(ωnτπ)


  周期信号 f p ( t ) f_p \left( t \right) fp(t) f 2 τ p ( t ) f_{2\tau p} \left( t \right) f2τp(t)减去常量 1 1 1,那么它对应的傅里叶变换 F P ( ω ) F_P \left( \omega \right) FP(ω)为:
F P ( ω ) = F 2 τ P ( ω ) − 2 π δ ( ω ) F_P \left( \omega \right) = F_{2\tau P} \left( \omega \right) - 2\pi \delta \left( \omega \right) FP(ω)=F2τP(ω)2πδ(ω)

  根据上面 F 2 τ P ( ω ) F_{2\tau P} \left( \omega \right) F2τP(ω),所以: F P ( ω ) = 2 π ∑ n = − ∞ , n ≠ 0 + ∞ S a ( n ⋅ π τ ) δ ( ω − n π τ ) F_P \left( \omega \right) = 2\pi \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {Sa\left( {n \cdot {\pi \over \tau }} \right)\delta \left( {\omega - n{\pi \over \tau }} \right)} FP(ω)=2πn=,n=0+Sa(nτπ)δ(ωnτπ)

  最终, F ( ω ) F\left( \omega \right) F(ω)为:

F ( ω ) = 1 2 π F T ( ω ) ∗ F P ( ω ) F\left( \omega \right) = {1 \over {2\pi }}F_T \left( \omega \right) * F_P \left( \omega \right) F(ω)=2π1FT(ω)FP(ω) = 1 2 π ⋅ τ 1 S a 2 ( ω τ 1 2 ) ∗ 2 π ∑ n = − ∞ , n ≠ 0 + ∞ S a ( n π τ ) δ ( ω − n π τ ) = {1 \over {2\pi }} \cdot \tau _1 Sa^2 \left( { { {\omega \tau _1 } \over 2}} \right) * 2\pi \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {Sa\left( { { {n\pi } \over \tau }} \right)\delta \left( {\omega - { {n\pi } \over \tau }} \right)} =2π1τ1Sa2(2ωτ1)2πn=,n=0+Sa(τnπ)δ(ωτnπ) = τ ∑ n = − ∞ , n ≠ 0 + ∞ S a ( n π τ ) ⋅ S a 2 [ τ 1 2 ( ω − n π τ ) ] = \tau \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {Sa\left( { { {n\pi } \over \tau }} \right) \cdot Sa^2 \left[ { { {\tau _1 } \over 2}\left( {\omega - { {n\pi } \over \tau }} \right)} \right]} =τn=,n=0+Sa(τnπ)Sa2[2τ1(ωτnπ)]

1.1.2 信号参数分析

  求解:

  (1) ϕ ( ω ) \phi \left( \omega \right) ϕ(ω)

f ( t ) f\left( t \right) f(t)是偶对称等腰三角脉冲信号 f t ( t ) f_t \left( t \right) ft(t)往右平移距离1,因此, f ( t ) f\left( t \right) f(t)的傅里叶变换 F ( ω ) F\left( \omega \right) F(ω) f p ( t ) f_p \left( t \right) fp(t)的傅里叶变换 F P ( ω ) F_P \left( \omega \right) FP(ω)之间的关系为: F ( ω ) = F P ( ω ) ⋅ e − j 1.5 ω F\left( \omega \right) = F_P \left( \omega \right) \cdot e^{ - j1.5\omega } F(ω)=FP(ω)ej1.5ω


  因为 f p ( t ) f_p \left( t \right) fp(t)是一个“实偶”信号,所以它的 F P ( ω ) F_P \left( \omega \right) FP(ω)频谱也是一个“实偶”信号,因此,对应的相位谱 ϕ P ( ω ) = 0 \phi _P \left( \omega \right) = 0 ϕP(ω)=0

  所以 F ( ω ) F\left( \omega \right) F(ω)的相位 ϕ ( ω ) \phi \left( \omega \right) ϕ(ω)为: ϕ ( ω ) = − 1.5 ω \phi \left( \omega \right) = - 1.5\omega ϕ(ω)=1.5ω

实际上, f τ ( t ) f_\tau \left( t \right) fτ(t)的频谱为: F T ( ω ) = 2 S a 2 ( ω ) F_T \left( \omega \right) = 2Sa^2 \left( \omega \right) FT(ω)=2Sa2(ω)

  (2) F ( 0 ) F\left( 0 \right) F(0)

  根据傅里叶变换公式: F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F\left( \omega \right) = \int_{ - \infty }^\infty {f\left( t \right)e^{ - j\omega t} dt} F(ω)=f(t)ejωtdt

所以
F ( 0 ) = ∫ − ∞ ∞ f ( t ) d t = 4 F\left( 0 \right) = \int_{ - \infty }^\infty {f\left( t \right)dt} = 4 F(0)=f(t)dt=4

  (3) ∫ − ∞ + ∞ F ( ω ) d ω \int_{ - \infty }^{ + \infty } {F\left( \omega \right)d\omega } +F(ω)dω

  根据傅里叶变换的反变换公式: f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f\left( t \right) = {1 \over {2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right)e^{j\omega t} d\omega } f(t)=2π1F(ω)ejωtdω

  所以 2 π f ( 0 ) = ∫ − ∞ ∞ F ( ω ) d ω = π 2\pi f\left( 0 \right) = \int_{ - \infty }^\infty {F\left( \omega \right)d\omega } = \pi 2πf(0)=F(ω)dω=π

  (4) 绘制波形

  根据傅里叶变换的“奇偶虚实对称”特性, F T − 1 [ R e ( F ( ω ) ) ] FT^{ - 1} \left[ { {\mathop{\rm Re}\nolimits} \left( {F\left( \omega \right)} \right)} \right] FT1[Re(F(ω))]对应的是 f ( t ) f\left( t \right) f(t)偶分量

▲ 图1.1.1 函数的波形

▲ 图1.1.1 函数的波形

1.2 证明题

1.2.1 信号的解析信号频谱

  证明:

  根据傅里叶变换时域卷积定理可知:

z ( t ) = f ( t ) ∗ u ~ ( t ) z\left( t \right) = f\left( t \right) * \tilde u\left( t \right) z(t)=f(t)u~(t)

  其中 u ~ ( t ) \tilde u\left( t \right) u~(t) U ( ω ) U\left( \omega \right) U(ω) 是一对傅里叶变换。根据:
U ( ω ) = u ( ω ) = { 1 ,      ω > 0 0 ,     ω < 0 U\left( \omega \right) = u\left( \omega \right) = \left\{ \begin{matrix} {1,\,\,\,\,\omega > 0}\\{0,\,\,\,\omega < 0}\\\end{matrix} \right. U(ω)=u(ω)={ 1,ω>00,ω<0

  利用傅里叶变换的对偶特性:


  可以求出:
u ~ ( t ) = − 1 π ⋅ j t + δ ( t ) \tilde u\left( t \right) = { { - 1} \over {\pi \cdot jt}} + \delta \left( t \right) u~(t)=πjt1+δ(t)

因此:
f ( t ) ∗ u ~ ( t ) = f ( t ) ∗ [ − 1 π ⋅ j t + δ ( t ) ] f\left( t \right) * \tilde u\left( t \right) = f\left( t \right) * \left[ { { { - 1} \over {\pi \cdot jt}} + \delta \left( t \right)} \right] f(t)u~(t)=f(t)[πjt1+δ(t)] = f ( t ) + j π ∫ − ∞ ∞ f ( t ) ⋅ 1 t − θ d θ = f\left( t \right) + {j \over \pi }\int_{ - \infty }^\infty {f\left( t \right) \cdot {1 \over {t - \theta }}d\theta } =f(t)+πjf(t)tθ1dθ

  原题得证□ 。

  利用MATLAB展示单边带信号

  具有直流分量和三个不同频率的正弦信号分量的合成信号的解析信号: 2.5 + cos ⁡ ( 2 π ⋅ 203 ⋅ t ) + sin ⁡ ( 2 π ⋅ 721 ⋅ t ) + cos ⁡ ( 2 π ⋅ 1001 ⋅ t ) 2.5 + \cos \left( {2\pi \cdot 203 \cdot t} \right) + \sin \left( {2\pi \cdot 721 \cdot t} \right) + \cos \left( {2\pi \cdot 1001 \cdot t} \right) 2.5+cos(2π203t)+sin(2π721t)+cos(2π1001t)

>>x=1+cos(2*pi*(0:999)'/20).*exp(-0.004*(0:999)');
>>envelope(x)'

>>load('mtlb');'
>>envelope(mtlb,30,'peak')

1.3 思考题

1.3.1 周期信号频谱分析

  求解:

  (a) x(t)是一个偶对称等腰三角形波形,它的 底宽为2,高为1,对应的傅里叶变换为:
X ( ω ) = S a 2 ( ω 2 ) X\left( \omega \right) = Sa^2 \left( { {\omega \over 2}} \right) X(ω)=Sa2(2ω)

  (b) 是对x(t)进行周期为4的周期延拓,形 成如下图所示的周期波形:

  (c) 对于任何一个函数 h ( t ) h\left( t \right) h(t) ,它与它自身延迟4相减得到:

h 4 ( t ) = h ( t ) − h ( t − 4 ) h_4 \left( t \right) = h\left( t \right) - h\left( {t - 4} \right) h4(t)=h(t)h(t4)

  再进行周期延拓,结果为零:

∑ k = − ∞ + ∞ h 4 ( t − 4 k ) − h 4 ( t − 4 − 4 k ) \sum\limits_{k = - \infty }^{ + \infty } {h_4 \left( {t - 4k} \right) - h_4 \left( {t - 4 - 4k} \right)} k=+h4(t4k)h4(t44k) = ∑ k = − ∞ ∞ h 4 ( t − 4 k ) − ∑ k = − ∞ ∞ h 4 ( t − 4 − 4 k ) = 0 = \sum\limits_{k = - \infty }^\infty {h_4 \left( {t - 4k} \right)} - \sum\limits_{k = - \infty }^\infty {h_4 \left( {t - 4 - 4k} \right)} = 0 =k=h4(t4k)k=h4(t44k)=0

  因此任意取h(t)不为零,按照下面方式形成g(t):

g ( t ) = x ( t ) + h ( t ) − h ( t − 4 ) g\left( t \right) = x\left( t \right) + h\left( t \right) - h\left( {t - 4} \right) g(t)=x(t)+h(t)h(t4)

∑ k = − ∞ ∞ g ( t − 4 k ) = ∑ k = − ∞ ∞ x ( t − 4 k ) \sum\limits_{k = - \infty }^\infty {g\left( {t - 4k} \right)} = \sum\limits_{k = - \infty }^\infty {x\left( {t - 4k} \right)} k=g(t4k)=k=x(t4k)

x ~ ( t ) = g ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = g\left( t \right) * \sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=g(t)k=δ(t4k)

  举出一个例子:

  (d)由于:
x ~ ( t ) = x ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = x\left( t \right)*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=x(t)k=δ(t4k)

x ~ ( t ) = g ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − 4 k ) \tilde x\left( t \right) = g\left( t \right)*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)} x~(t)=g(t)k=δ(t4k)

  假设 x ~ ( t ) , x ( t ) , g ( t ) \tilde x\left( t \right),x\left( t \right),g\left( t \right) x~(t),x(t),g(t)各自的傅里叶变换为:


  而 X ~ ( ω ) \tilde X\left( \omega \right) X~(ω)是对 G ( ω ) G\left( \omega \right) G(ω) X ( ω ) X\left( \omega \right) X(ω)分别进行间隔为:
ω 1 = 2 π 4 = π 2 \omega _1 = { {2\pi } \over 4} = {\pi \over 2} ω1=42π=2π

  的离散化,即:
X ~ ( ω ) = π 2 ⋅ ∑ n = − ∞ ∞ X ( π n 2 ) ⋅ δ ( ω − π n 2 ) \tilde X\left( \omega \right) = {\pi \over 2} \cdot \sum\limits_{n = - \infty }^\infty {X\left( { { {\pi n} \over 2}} \right) \cdot \delta \left( {\omega - { {\pi n} \over 2}} \right)} X~(ω)=2πn=X(2πn)δ(ω2πn) = π 2 ⋅ ∑ n = − ∞ ∞ G ( π n 2 ) ⋅ δ ( ω − π n 2 ) = {\pi \over 2} \cdot \sum\limits_{n = - \infty }^\infty {G\left( { { {\pi n} \over 2}} \right) \cdot \delta \left( {\omega - { {\pi n} \over 2}} \right)} =2πn=G(2πn)δ(ω2πn)

  根据上面方程,左右两边奇异函数系数匹配方法,可知: G ( j π k 2 ) = X ( j π k 2 ) G\left( {j{ {\pi k} \over 2}} \right) = X\left( {j{ {\pi k} \over 2}} \right) G(j2πk)=X(j2πk)

  另外,也可以从g(t)的构造方式进行证明。

  如果按照前面构造的过程,取任意函数 h ( t ) h\left( t \right) h(t) g ( t ) = x ( t ) + h ( t + 2 ) − h ( t − 2 ) g\left( t \right) = x\left( t \right) + h\left( {t + 2} \right) - h\left( {t - 2} \right) g(t)=x(t)+h(t+2)h(t2)

  满足条件(c)的假设,而:

令:


由于:

F T [ h ( t + 2 ) − h ( t − 2 ) ] FT\left[ {h\left( {t + 2} \right) - h\left( {t - 2} \right)} \right] FT[h(t+2)h(t2)] = H ( ω ) ( e j 2 ω − e − j 2 ω ) = H\left( \omega \right)\left( {e^{j2\omega } - e^{ - j2\omega } } \right) =H(ω)(ej2ωej2ω) = H ( ω ) [ 2 j ⋅ sin ⁡ 2 ω ] = H\left( \omega \right)\left[ {2j \cdot \sin 2\omega } \right] =H(ω)[2jsin2ω]

所以:

H 4 ( π k 2 ) = H ( π k 2 ) ⋅ 2 j ⋅ sin ⁡ ( 2 ⋅ π k 2 ) = 0 H_4 \left( { { {\pi k} \over 2}} \right) = H\left( { { {\pi k} \over 2}} \right) \cdot 2j \cdot \sin \left( {2 \cdot { {\pi k} \over 2}} \right) = 0 H4(2πk)=H(2πk)2jsin(22πk)=0

因此:
G ( π k 2 ) = X ( π k 2 ) + H 4 ( π k 2 ) = X ( π k 2 ) G\left( { { {\pi k} \over 2}} \right) = X\left( { { {\pi k} \over 2}} \right) + H_4 \left( { { {\pi k} \over 2}} \right) = X\left( { { {\pi k} \over 2}} \right) G(2πk)=X(2πk)+H4(2πk)=X(2πk)

1.3.2 两维傅里叶变换

  (a)

  (b)

x ( t 1 , t 2 ) = 1 ( 2 π ) 2 ∫ − ∞ ∞ ∫ − ∞ ∞ F ( ω 1 , ω 2 ) ⋅ e j ( ω 1 t 1 + ω 2 t 2 ) d ω 1 d ω 2 x\left( {t_1 ,t_2 } \right) = {1 \over {\left( {2\pi } \right)^2 }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {F\left( {\omega _1 ,\omega _2 } \right) \cdot e^{j\left( {\omega _1 t_1 + \omega _2 t_2 } \right)} d\omega _1 d\omega _2 } } x(t1,t2)=(2π)21F(ω1,ω2)ej(ω1t1+ω2t2)dω1dω2

1.4 调制与解调

1.4.1 分析调制信号频谱

  求解:

 Ⅰ.第一小题

 Ⅱ.第二小题

1.4.2 绘制调制信号的波形

  求解:

  • MATLAB 辅助绘图
>>Om=1;Oc=4*Om;
>>t=linspace(0,15,250);
>>plot((1+1.2*cos(Om*t)).*cos(Oc*t));

>>data=(1+1.2*cos(Om*t)).*cos(Oc*t);'
>>data(data<0)=0;
>>plot(t,data,'b','linewidth',2);

1.4.3 单边带调制信号解调

  求解:

1.5 信号调制系统分析

  求解:

  (1) e ( t ) = δ ( t ) e\left( t \right) = \delta \left( t \right) e(t)=δ(t),系统的输出 r ( t ) r\left( t \right) r(t)就是 e ( t ) ⋅ cos ⁡ ( ω c t ) = δ ( t ) e\left( t \right) \cdot \cos \left( {\omega _c t} \right) = \delta \left( t \right) e(t)cos(ωct)=δ(t)。作用在低通滤波器上的输出。

  设低通滤波器的频率特性为:

H 0 ( j ω ) = [ u ( ω + 2 Ω ) − u ( ω − 2 Ω ) ] H_0 \left( {j\omega } \right) = \left[ {u\left( {\omega + 2\Omega } \right) - u\left( {\omega - 2\Omega } \right)} \right] H0(jω)=[u(ω+2Ω)u(ω2Ω)]

  根据傅里叶变换的对偶特性可知它对应的单位冲击响应为: h 0 ( t ) = sin ⁡ 2 Ω ( t ) π t h_0 \left( t \right) = { {\sin 2\Omega \left( t \right)} \over {\pi t}} h0(t)=πtsin2Ω(t)

  再有: H L ( j ω ) = H 0 ( j ω ) ⋅ e − j ω t 0 H_L \left( {j\omega } \right) = H_0 \left( {j\omega } \right) \cdot e^{ - j\omega t_0 } HL(jω)=H0(jω)ejωt0

  根据傅里叶变换的时移特性可知:

h L ( t ) = sin ⁡ 2 Ω ( t − t 0 ) π ( t − t 0 ) h_L \left( t \right) = { {\sin 2\Omega \left( {t - t_0 } \right)} \over {\pi \left( {t - t_0 } \right)}} hL(t)=π(tt0)sin2Ω(tt0)

  因此,该系统对于低通滤波器通带范围内的信号具有t\0..的延迟特性。

  (2) 将输入信号看做信号做幅度调制,因此该系统就是同步解调过程。 e ( t ) = [ sin ⁡ ( Ω t ) Ω t ] 2 cos ⁡ ( ω c t ) e\left( t \right) = \begin{bmatrix} { { {\sin \left( {\Omega t} \right)} \over {\Omega t}}} \end{bmatrix}^2 \cos \left( {\omega _c t} \right) e(t)=[Ωtsin(Ωt)]2cos(ωct)

  由于输入信号的频带宽度落入了低通滤波器的通带范围内,因此根据调幅信号的同步解调原理,可以知道输出信号为被调制信号本身。再根据低通滤波器的延时特性,可以知

1 2 [ sin ⁡ Ω ( t − t 0 ) Ω ( t − t 0 ) ] {1 \over 2}\left[ { { {\sin \Omega \left( {t - t_0 } \right)} \over {\Omega \left( {t - t_0 } \right)}}} \right] 21[Ω(tt0)sinΩ(tt0)]

  (3) 根据幅度调制同步解调过程,可以知道,由于解调信号与调制信号相差90°,所以系统输出为0.

  (4) 系统是线性时变系统。其中主要是系统中存在一个时域相乘环节。


■ 相关文献链接:

● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124272558