信号与系统分析2022春季作业-参考答案:第三次作业-第二部分

封面动图来自于: SHUTTERSTOCK网站

§00 业题目

作业要求链接: 信号与系统 2022 春季学期第三次作业 https://zhuoqing.blog.csdn.net/article/details/123403423

§01 考答案(2)


1.4 求解单位冲激响应

1.4.1 必做题

(1)根据微分方程求解单位冲激响应

 Ⅰ.第一小题

  求解:
d 2 y ( t ) d t 2 + 8 d y ( t ) d t + 12 y ( t ) = 2 d x ( t ) d t { {d^2 y\left( t \right)} \over {dt^2 }} + 8{ {dy\left( t \right)} \over {dt}} + 12y\left( t \right) = 2{ {dx\left( t \right)} \over {dt}} dt2d2y(t)+8dtdy(t)+12y(t)=2dtdx(t)

  特征方程: λ 2 + 8 λ + 12 = 0 \lambda ^2 + 8\lambda + 12 = 0 λ2+8λ+12=0。特征根: λ 1 = − 2 ,    λ 2 = − 6 \lambda _1 = - 2,\,\,\lambda _2 = - 6 λ1=2,λ2=6

  系统的齐次解: y ( t ) = c 1 e − 2 t + c 2 e − 6 t y\left( t \right) = c_1 e^{ - 2t} + c_2 e^{ - 6t} y(t)=c1e2t+c2e6t

  通过奇异函数匹配方法确定系统的初始条件。

  当输入为 δ ( t ) \delta \left( t \right) δ(t),可以知道方程右边最高的奇异函数导数为 δ ′ ( t ) \delta '\left( t \right) δ(t)。近而可以确定方程左边最高导数想的奇异函数一般表达式为:
d 2 d t y ( t ) = a ⋅ δ ′ ( t ) + b ⋅ δ ( t ) + c ⋅ u ( t ) { {d^2 } \over {dt}}y\left( t \right) = a \cdot \delta '\left( t \right) + b \cdot \delta \left( t \right) + c \cdot u\left( t \right) dtd2y(t)=aδ(t)+bδ(t)+cu(t)
  近而: d d t y ( t ) = a ⋅ δ ( t ) + b ⋅ u ( t ) {d \over {dt}}y\left( t \right) = a \cdot \delta \left( t \right) + b \cdot u\left( t \right) dtdy(t)=aδ(t)+bu(t)

y ( t ) = a ⋅ u ( t ) y\left( t \right) = a \cdot u\left( t \right) y(t)=au(t)

因此:

a ⋅ δ ′ ( t ) + b ⋅ δ ( t ) + c ⋅ u ( t ) + 8 ⋅ [ a ⋅ δ ( t ) + b ⋅ u ( t ) ] + 12 ⋅ a ⋅ u ( t ) = 2 ⋅ δ ′ ( t ) a \cdot \delta '\left( t \right) + b \cdot \delta \left( t \right) + c \cdot u\left( t \right) + 8 \cdot \left[ {a \cdot \delta \left( t \right) + b \cdot u\left( t \right)} \right] + 12 \cdot a \cdot u\left( t \right) = 2 \cdot \delta '\left( t \right) aδ(t)+bδ(t)+cu(t)+8[aδ(t)+bu(t)]+12au(t)=2δ(t)

a ⋅ δ ′ ( t ) + ( b + 8 a ) δ ( t ) + ( c + 8 b + 12 a ) ⋅ u ( t ) = 2 δ ′ ( t ) a \cdot \delta '\left( t \right) + \left( {b + 8a} \right)\delta \left( t \right) + \left( {c + 8b + 12a} \right) \cdot u\left( t \right) = 2\delta '\left( t \right) aδ(t)+(b+8a)δ(t)+(c+8b+12a)u(t)=2δ(t)
{ a = 2 b + 8 a = 0 c + 8 b + 12 a = 0 \left\{ \begin{matrix} {a = 2}\\{b + 8a = 0}\\{c + 8b + 12a = 0}\\\end{matrix} \right. a=2b+8a=0c+8b+12a=0

  所以: { a = 2 b = − 16 c = 104 \left\{ \begin{matrix} {a = 2}\\{b = - 16}\\{c = 104}\\\end{matrix} \right. a=2b=16c=104

  由此可以得到:
y ′ ( 0 + ) − y ′ ( 0 − ) = b = − 16 y'\left( {0_ + } \right) - y'\left( {0_ - } \right) = b = - 16 y(0+)y(0)=b=16 y ( 0 + ) − y ( 0 − ) = a = 2 y\left( {0_ + } \right) - y\left( {0_ - } \right) = a = 2 y(0+)y(0)=a=2

  系统的起始条件:
y ′ ( 0 + ) = − 16 ,       y ( 0 + ) = 2 y'\left( {0_ + } \right) = - 16,\,\,\,\,\,y\left( {0_ + } \right) = 2 y(0+)=16,y(0+)=2

  求完全解的待定系数:
{ c 1 + c 2 = 2 − 2 c 1 − 6 c 2 = − 16 \left\{ \begin{matrix} {c_1 + c_2 = 2}\\{ - 2c_1 - 6c_2 = - 16}\\\end{matrix} \right. { c1+c2=22c16c2=16

{ c 1 = − 1 c 2 = 3 \left\{ \begin{matrix} {c_1 = - 1}\\{c_2 = 3}\\\end{matrix} \right. { c1=1c2=3

  系统的单位冲击响应:

y ( t ) = ( − e − 2 t + 3 e − 6 t ) ⋅ u ( t ) y\left( t \right) = \left( { - e^{ - 2t} + 3e^{ - 6t} } \right) \cdot u\left( t \right) y(t)=(e2t+3e6t)u(t)

 Ⅱ.第二小题:

  求解:
d 2 d t 2 y ( t ) + 5 d d t y ( t ) + 4 y ( t ) = d d t x ( t ) + 2 x ( t ) { {d^2 } \over {dt^2 }}y\left( t \right) + 5{d \over {dt}}y\left( t \right) + 4y\left( t \right) = {d \over {dt}}x\left( t \right) + 2x\left( t \right) dt2d2y(t)+5dtdy(t)+4y(t)=dtdx(t)+2x(t)

  特征方程: λ 2 + 5 λ + 4 = 0 \lambda ^2 + 5\lambda + 4 = 0 λ2+5λ+4=0,求得特征根: λ 1 = − 1 ,    λ 2 = − 4 \lambda _1 = - 1,\,\,\lambda _2 = - 4 λ1=1,λ2=4。系统的齐次解: y ( t ) = c 1 e − t + c 2 e − 4 t y\left( t \right) = c_1 e^{ - t} + c_2 e^{ - 4t} y(t)=c1et+c2e4t

  由输入为, δ ( t ) \delta \left( t \right) δ(t),可以知道方程左边最高导数项中的奇异函数为:

d 2 d t 2 y ( t ) = a ⋅ δ ′ ( t ) + b ⋅ δ ( t ) + c ⋅ u ( t ) { {d^2 } \over {dt^2 }}y\left( t \right) = a \cdot \delta '\left( t \right) + b \cdot \delta \left( t \right) + c \cdot u\left( t \right) dt2d2y(t)=aδ(t)+bδ(t)+cu(t)

d d t y ( t ) = a ⋅ δ ( t ) + b ⋅ u ( t ) {d \over {dt}}y\left( t \right) = a \cdot \delta \left( t \right) + b \cdot u\left( t \right) dtdy(t)=aδ(t)+bu(t)

y ( t ) = a ⋅ u ( t ) y\left( t \right) = a \cdot u\left( t \right) y(t)=au(t)

因此:
a ⋅ δ ′ ( t ) + b ⋅ δ ( t ) + c ⋅ u ( t ) + 5 ⋅ [ a ⋅ δ ( t ) + b ⋅ u ( t ) ] + ⋅ a ⋅ u ( t ) = δ ′ ( t ) + 2 δ ( t ) a \cdot \delta '\left( t \right) + b \cdot \delta \left( t \right) + c \cdot u\left( t \right) + 5 \cdot \left[ {a \cdot \delta \left( t \right) + b \cdot u\left( t \right)} \right] + \cdot a \cdot u\left( t \right) = \delta '\left( t \right) + 2\delta \left( t \right) aδ(t)+bδ(t)+cu(t)+5[aδ(t)+bu(t)]+au(t)=δ(t)+2δ(t)

a ⋅ δ ′ ( t ) + ( b + 5 a ) δ ( t ) + ( c + 5 b + 4 a ) ⋅ u ( t ) = δ ′ ( t ) + 2 δ ( t ) a \cdot \delta '\left( t \right) + \left( {b + 5a} \right)\delta \left( t \right) + \left( {c + 5b + 4a} \right) \cdot u\left( t \right) = \delta '\left( t \right) + 2\delta \left( t \right) aδ(t)+(b+5a)δ(t)+(c+5b+4a)u(t)=δ(t)+2δ(t)

{ a = 1 b + 5 a = 2 c + 5 b + 4 a = 0 \left\{ \begin{matrix} {a = 1}\\{b + 5a = 2}\\{c + 5b + 4a = 0}\\\end{matrix} \right. a=1b+5a=2c+5b+4a=0

{ a = 1 b = − 3 c = 11 \left\{ \begin{matrix} {a = 1}\\{b = - 3}\\{c = 11}\\\end{matrix} \right. a=1b=3c=11

y ′ ( 0 + ) − y ′ ( 0 − ) = b = − 3 y'\left( {0_ + } \right) - y'\left( {0_ - } \right) = b = - 3 y(0+)y(0)=b=3 y ( 0 + ) − y ( 0 − ) = a = 1 y\left( {0_ + } \right) - y\left( {0_ - } \right) = a = 1 y(0+)y(0)=a=1

  系统的起始条件:
y ′ ( 0 + ) = − 3 ,       y ( 0 + ) = 1 y'\left( {0_ + } \right) = - 3,\,\,\,\,\,y\left( {0_ + } \right) = 1 y(0+)=3,y(0+)=1

  求完全解中的待定系数:
{ c 1 + c 2 = 1 − c 1 − 4 c 2 = − 3 \left\{ \begin{matrix} {c_1 + c_2 = 1}\\{ - c_1 - 4c_2 = - 3}\\\end{matrix} \right. { c1+c2=1c14c2=3

{ c 1 = 1 3 c 2 = 2 3 \left\{ \begin{matrix} {c_1 = {1 \over 3}}\\{c_2 = {2 \over 3}}\\\end{matrix} \right. { c1=31c2=32

  系统的单位冲击响应:

y ( t ) = ( 1 3 e − t + 2 3 e − 4 t ) ⋅ u ( t ) y\left( t \right) = \left( { {1 \over 3}e^{ - t} + {2 \over 3}e^{ - 4t} } \right) \cdot u\left( t \right) y(t)=(31et+32e4t)u(t)

(2)综合分析求解单位冲激响应

  根据卷积的定义: ∫ − ∞ ∞ e ( τ ) f ( t − τ ) d τ = e ( t ) ∗ f ( t ) \int_{ - \infty }^\infty {e\left( \tau \right)f\left( {t - \tau } \right)d\tau } = e\left( t \right) * f\left( t \right) e(τ)f(tτ)dτ=e(t)f(t)

  所以输入输出方程可以写为: d d t r ( t ) + 5 r ( t ) = e ( t ) ∗ f ( t ) − e ( t ) {d \over {dt}}r\left( t \right) + 5r\left( t \right) = e\left( t \right) * f\left( t \right) - e\left( t \right) dtdr(t)+5r(t)=e(t)f(t)e(t)

  其中 e ( t ) e\left( t \right) e(t)是系统的输入, r ( t ) r\left( t \right) r(t)是系统的输出。

  由于 δ ( t ) \delta \left( t \right) δ(t) h ( t ) h\left( t \right) h(t)是系统的输入、输出关系,所以他们满足:
d d t h ( t ) + 5 h ( t ) = δ ( t ) ∗ f ( t ) − δ ( t ) = f ( t ) − δ ( t ) {d \over {dt}}h\left( t \right) + 5h\left( t \right) = \delta \left( t \right) * f\left( t \right) - \delta \left( t \right) = f\left( t \right) - \delta \left( t \right) dtdh(t)+5h(t)=δ(t)f(t)δ(t)=f(t)δ(t)

  再将 f ( t ) = e − t u ( t ) + 3 δ ( t ) f\left( t \right) = e^{ - t} u\left( t \right) + 3\delta \left( t \right) f(t)=etu(t)+3δ(t)代入上式,有: d d t h ( t ) + 5 h ( t ) = e − t u ( t ) + 2 δ ( t ) {d \over {dt}}h\left( t \right) + 5h\left( t \right) = e^{ - t} u\left( t \right) + 2\delta \left( t \right) dtdh(t)+5h(t)=etu(t)+2δ(t)

  可以使用经典的微分方程求解三部曲的方法求解上述微分方程,从而得到系统的单位冲激响应 h ( t ) h\left( t \right) h(t)

  为了简便,这里引入微分算子求解上述微分方程,考虑到: e − t u ( t ) = 1 p + 1 δ ( t ) e^{ - t} u\left( t \right) = {1 \over {p + 1}}\delta \left( t \right) etu(t)=p+11δ(t)

( p + 5 ) h ( t ) = 1 p + 1 δ ( t ) + 2 δ ( t ) \left( {p + 5} \right)h\left( t \right) = {1 \over {p + 1}}\delta \left( t \right) + 2\delta \left( t \right) (p+5)h(t)=p+11δ(t)+2δ(t)

h ( t ) = 1 p + 5 ⋅ 1 p + 1 δ ( t ) + 2 p + 5 δ ( t ) h\left( t \right) = {1 \over {p + 5}} \cdot {1 \over {p + 1}}\delta \left( t \right) + {2 \over {p + 5}}\delta \left( t \right) h(t)=p+51p+11δ(t)+p+52δ(t)

= ( − 1 4 p + 5 + 1 4 p + 1 ) δ ( t ) + 2 p + 5 δ ( t ) = \left( { { { - {1 \over 4}} \over {p + 5}} + { { {1 \over 4}} \over {p + 1}}} \right)\delta \left( t \right) + {2 \over {p + 5}}\delta \left( t \right) =(p+541+p+141)δ(t)+p+52δ(t)

  所以: h ( t ) = ( 7 4 e − 5 t + 1 4 e − t ) u ( t ) h\left( t \right) = \left( { {7 \over 4}e^{ - 5t} + {1 \over 4}e^{ - t} } \right)u\left( t \right) h(t)=(47e5t+41et)u(t)

求解微分方程,可以使用经典的求解过程,也可以利用上面的算子法。实际上到课程后面第五章之后,可以使用拉普拉斯变换来简化微分方程的求解过程。算子法实际上是拉普拉斯变换求解过程。

1.4.2 选做题

(1)第一种求解方法

  由于 r ′ ( t ) = − 3 r ( t ) + e − 2 t u ( t ) r'\left( t \right) = - 3r\left( t \right) + e^{ - 2t} u\left( t \right) r(t)=3r(t)+e2tu(t)

  即: e ′ ( t ) ∗ h ( t ) = − 3 e ( t ) ∗ h ( t ) + e − 2 t u ( t ) e'\left( t \right) * h\left( t \right) = - 3e\left( t \right) * h\left( t \right) + e^{ - 2t} u\left( t \right) e(t)h(t)=3e(t)h(t)+e2tu(t)

  将 e ( t ) = 2 e − 3 t u ( t ) e\left( t \right) = 2e^{ - 3t} u\left( t \right) e(t)=2e3tu(t)代入上式,有:

[ − 6 e − 3 t u ( t ) + 2 e − 3 t δ ( t ) ] ∗ h ( t ) = − 6 e − 3 t u ( t ) ∗ h ( t ) + e − 2 t u ( t ) \left[ { - 6e^{ - 3t} u\left( t \right) + 2e^{ - 3t} \delta \left( t \right)} \right] * h\left( t \right) = - 6e^{ - 3t} u\left( t \right) * h\left( t \right) + e^{ - 2t} u\left( t \right) [6e3tu(t)+2e3tδ(t)]h(t)=6e3tu(t)h(t)+e2tu(t)

  从而得到: 2 δ ( t ) ∗ h ( t ) = e − 2 t u ( t ) 2\delta \left( t \right) * h\left( t \right) = e^{ - 2t} u\left( t \right) 2δ(t)h(t)=e2tu(t)

  则: h ( t ) = 1 2 e − 2 t u ( t ) h\left( t \right) = {1 \over 2}e^{ - 2t} u\left( t \right) h(t)=21e2tu(t)

(2)第二种求解方法

  由于 r ( t ) = e ( t ) ∗ h ( t ) r\left( t \right) = e\left( t \right) * h\left( t \right) r(t)=e(t)h(t),而且: − 3 r ( t ) + e − 2 t u ( t ) = d e ( t ) d t ∗ h ( t ) = d r ( t ) d t - 3r\left( t \right) + e^{ - 2t} u\left( t \right) = { {de\left( t \right)} \over {dt}} * h\left( t \right) = { {dr\left( t \right)} \over {dt}} 3r(t)+e2tu(t)=dtde(t)h(t)=dtdr(t)

  所以可以得到一下微分方程: d r ( t ) d t + 3 r ( t ) = e − 2 t u ( t ) { {dr\left( t \right)} \over {dt}} + 3r\left( t \right) = e^{ - 2t} u\left( t \right) dtdr(t)+3r(t)=e2tu(t)

  此微分方程的齐次解: r h ( t ) = A ⋅ e − 3 t ,    t > 0 r_h \left( t \right) = A \cdot e^{ - 3t} ,\,\,t > 0 rh(t)=Ae3t,t>0

  特解: r p ( t ) = B ⋅ e − 2 t ,    t > 0 r_p \left( t \right) = B \cdot e^{ - 2t} ,\,\,t > 0 rp(t)=Be2t,t>0

  将特解代入微分方程,有: − 2 B e − 2 t + 3 B e − 2 t = e − 2 t - 2Be^{ - 2t} + 3Be^{ - 2t} = e^{ - 2t} 2Be2t+3Be2t=e2t,从而可得: B = 1 B = 1 B=1

  由于 r ( t ) r\left( t \right) r(t)是零状态响应,而且方程右端没有冲激项(没有奇异函数),所以 r ( 0 + ) = r ( 0 − ) r\left( {0_ + } \right) = r\left( {0_ - } \right) r(0+)=r(0)。由此条件代入: r ( t ) = A e − 3 t + e − 2 t r\left( t \right) = Ae^{ - 3t} + e^{ - 2t} r(t)=Ae3t+e2t。可以求得: A = − 1 A = - 1 A=1。则: r ( t ) = ( − e − 3 t + e − 2 t ) u ( t ) r\left( t \right) = \left( { - e^{ - 3t} + e^{ - 2t} } \right)u\left( t \right) r(t)=(e3t+e2t)u(t)

  将上式 r ( t ) r\left( t \right) r(t)代入前面的方程,可得: ( − e − 3 t + e − 2 t ) u ( t ) = e ( t ) ∗ h ( t ) = 2 e − 3 t u ( t ) ∗ h ( t ) \left( { - e^{ - 3t} + e^{ - 2t} } \right)u\left( t \right) = e\left( t \right) * h\left( t \right) = 2e^{ - 3t} u\left( t \right) * h\left( t \right) (e3t+e2t)u(t)=e(t)h(t)=2e3tu(t)h(t)

  引入微分算则,求解该卷积方程: ( 1 p + 2 − 1 p + 3 ) δ ( t ) = 2 p + 3 δ ( t ) ∗ h ( t ) \left( { {1 \over {p + 2}} - {1 \over {p + 3}}} \right)\delta \left( t \right) = {2 \over {p + 3}}\delta \left( t \right) * h\left( t \right) (p+21p+31)δ(t)=p+32δ(t)h(t)

  两边同乘以: 1 2 ( p + 3 ) {1 \over 2}\left( {p + 3} \right) 21(p+3)

  有 h ( t ) = 1 2 ⋅ 1 p + 2 δ ( t ) h\left( t \right) = {1 \over 2} \cdot {1 \over {p + 2}}\delta \left( t \right) h(t)=21p+21δ(t)即: h ( t ) = 1 2 e − 2 t u ( t ) h\left( t \right) = {1 \over 2}e^{ - 2t} u\left( t \right) h(t)=21e2tu(t)

1.5 系统分析

1.5.1 必做题

(1)第一小问

  由于: e 2 ( t ) = δ ( t ) = d d t u ( t ) = d d t e 1 ( t ) e_2 \left( t \right) = \delta \left( t \right) = {d \over {dt}}u\left( t \right) = {d \over {dt}}e_1 \left( t \right) e2(t)=δ(t)=dtdu(t)=dtde1(t)
  所以: r z s 2 ( t ) = d d t r z s 1 ( t ) r_{zs2} \left( t \right) = {d \over {dt}}r_{zs1} \left( t \right) rzs2(t)=dtdrzs1(t)
  根据题意,于是有: r z i ( t ) + r z s 1 ( t ) = r 1 ( t ) = 2 e − t u ( t ) r_{zi} \left( t \right) + r_{zs1} \left( t \right) = r_1 \left( t \right) = 2e^{ - t} u\left( t \right) rzi(t)+rzs1(t)=r1(t)=2etu(t)

r z i ( t ) + r z s 2 ( t ) = r 2 ( t ) = δ ( t ) r_{zi} \left( t \right) + r_{zs2} \left( t \right) = r_2 \left( t \right) = \delta \left( t \right) rzi(t)+rzs2(t)=r2(t)=δ(t)

  上述两个方程(2)-(1)得: r z s 1 ′ ( t ) − r z s 1 ( t ) = δ ( t ) − 2 e − t u ( t ) r'_{zs1} \left( t \right) - r_{zs1} \left( t \right) = \delta \left( t \right) - 2e^{ - t} u\left( t \right) rzs1(t)rzs1(t)=δ(t)2etu(t)

  这是关于系统零状态响应的微分方程。下面求解该微分方程:

  引入算子P,求解上述微分方程:

( p − 1 ) ⋅ r z s 1 ( t ) = ( 1 − 2 p + 1 ) δ ( t ) \left( {p - 1} \right) \cdot r_{zs1} \left( t \right) = \left( {1 - {2 \over {p + 1}}} \right)\delta \left( t \right) (p1)rzs1(t)=(1p+12)δ(t)

  即: r z s 1 ( t ) = ( 1 p − 1 + 1 p + 1 − 1 p − 1 ) δ ( t ) r_{zs1} \left( t \right) = \left( { {1 \over {p - 1}} + {1 \over {p + 1}} - {1 \over {p - 1}}} \right)\delta \left( t \right) rzs1(t)=(p11+p+11p11)δ(t)

= 1 p + 1 δ ( t ) = e − t u ( t ) = {1 \over {p + 1}}\delta \left( t \right) = e^{ - t} u\left( t \right) =p+11δ(t)=etu(t)

  所以,系统的零状态响应为: r z i ( t ) = e − t u ( t ) r_{zi} \left( t \right) = e^{ - t} u\left( t \right) rzi(t)=etu(t)

这里的算子方法,实际上就是利用拉普拉斯变换来简化求解微分方程。在第二章还没有讲解具体的算子方法,所以,最后一部分可以使用经典的微分方程求解“三部曲"来完成。

(2)第二小问

  由于 e 2 ( t ) = δ ( t ) e_2 \left( t \right) = \delta \left( t \right) e2(t)=δ(t),所以: r z s 2 ( t ) = h ( t ) = r z s 1 ′ ( t ) = δ ( t ) − e − t u ( t ) r_{zs2} \left( t \right) = h\left( t \right) = r'_{zs1} \left( t \right) = \delta \left( t \right) - e^{ - t} u\left( t \right) rzs2(t)=h(t)=rzs1(t)=δ(t)etu(t)

  当 e 3 ( t ) = e − t u ( t ) e_3 \left( t \right) = e^{ - t} u\left( t \right) e3(t)=etu(t)时: r z s 3 ( t ) = e 3 ( t ) ∗ h ( t ) = e − t u ( t ) ∗ [ δ ( t ) − e − t u ( t ) ] r_{zs3} \left( t \right) = e_3 \left( t \right) * h\left( t \right) = e^{ - t} u\left( t \right) * \left[ {\delta \left( t \right) - e^{ - t} u\left( t \right)} \right] rzs3(t)=e3(t)h(t)=etu(t)[δ(t)etu(t)] = e − t u ( t ) − t ⋅ e − t u ( t ) = e^{ - t} u\left( t \right) - t \cdot e^{ - t} u\left( t \right) =etu(t)tetu(t)

  所以完全响应为: r 3 ( t ) = r z i ( t ) + r z s 3 ( t ) = ( 2 − t ) ⋅ e − t u ( t ) r_3 \left( t \right) = r_{zi} \left( t \right) + r_{zs3} \left( t \right) = \left( {2 - t} \right) \cdot e^{ - t} u\left( t \right) r3(t)=rzi(t)+rzs3(t)=(2t)etu(t)

1.5.2 选做题

(1)第一小问

(1) 根据题意,可知系统的响应包括有 齐次解和特解,分别是:

y h [ n ] = ( 2 n + 3 ⋅ 5 n ) u [ n ] ,      y p [ n ] = 10 u [ n ] y_h \left[ n \right] = \left( {2^n + 3 \cdot 5^n } \right)u\left[ n \right],\,\,\,\,y_p \left[ n \right] = 10u\left[ n \right] yh[n]=(2n+35n)u[n],yp[n]=10u[n]

  那么,系统的特征跟为: α 1 = 2 ,      α 1 = 5 \alpha _1 = 2,\,\,\,\,\alpha _1 = 5 α1=2,α1=5

  由此,可以得到系统齐次方程的系数,假设系统输入的一般表达式为:
y [ n ] − 7 y [ n − 1 ] + 10 y [ n − 2 ] = b 0 x [ n ] + b 1 x [ n − 1 ] + b 2 x [ n − 2 ] y\left[ n \right] - 7y\left[ {n - 1} \right] + 10y\left[ {n - 2} \right] = b_0 x\left[ n \right] + b_1 x\left[ {n - 1} \right] + b_2 x\left[ {n - 2} \right] y[n]7y[n1]+10y[n2]=b0x[n]+b1x[n1]+b2x[n2]

  引入延迟算子 E E E,则差分方程可以写做:

y [ n ] = b 0 E 2 + b 1 E + b 2 E 2 − 7 E + 10 x [ n ] y\left[ n \right] = { {b_0 E^2 + b_1 E + b_2 } \over {E^2 - 7E + 10}}x\left[ n \right] y[n]=E27E+10b0E2+b1E+b2x[n]

  对于输入信号 x [ n ] = u [ n ] x\left[ n \right] = u\left[ n \right] x[n]=u[n],对应算子为: x [ n ] = E E − 1 δ [ n ] x\left[ n \right] = {E \over {E - 1}}\delta \left[ n \right] x[n]=E1Eδ[n]

y [ n ] = b 0 E 2 + b 1 E + b 2 E 2 − 7 E + 10 ⋅ E E − 1 δ [ n ] y\left[ n \right] = { {b_0 E^2 + b_1 E + b_2 } \over {E^2 - 7E + 10}} \cdot {E \over {E - 1}}\delta \left[ n \right] y[n]=E27E+10b0E2+b1E+b2E1Eδ[n] = ( b 0 + b 1 + b 2 4 E E − 1 + 4 b 0 + 2 b 1 + b 2 − 3 E E − 2 + 25 b 0 + 5 b 1 + b 2 12 E E − 5 ) δ [ n ] = \left( { { { { {b_0 + b_1 + b_2 } \over 4}E} \over {E - 1}} + { { { {4b_0 + 2b_1 + b_2 } \over { - 3}}E} \over {E - 2}} + { { { {25b_0 + 5b_1 + b_2 } \over {12}}E} \over {E - 5}}} \right)\delta \left[ n \right] =(E14b0+b1+b2E+E234b0+2b1+b2E+E51225b0+5b1+b2E)δ[n] = ( 4 b 0 + 2 b 1 + b 2 − 3 2 n + 25 b 0 + 5 b 1 + b 2 12 5 n + b 0 + b 1 + b 2 4 ) u [ n ] = \left( { { {4b_0 + 2b_1 + b_2 } \over { - 3}}2^n + { {25b_0 + 5b_1 + b_2 } \over {12}}5^n + { {b_0 + b_1 + b_2 } \over 4}} \right)u\left[ n \right] =(34b0+2b1+b22n+1225b0+5b1+b25n+4b0+b1+b2)u[n]

  再根据已知的: y [ n ] = ( 2 n + 3 ⋅ 5 n + 10 ) u [ n ] y\left[ n \right] = \left( {2^n + 3 \cdot 5^n + 10} \right)u\left[ n \right] y[n]=(2n+35n+10)u[n]

  对比前面的算子表达式,可得:

25 b 0 + 5 b 1 + b 2 = 36 25b_0 + 5b_1 + b_2 = 36 25b0+5b1+b2=36 4 b 0 + 2 b 1 + b 2 = − 3 4b_0 + 2b_1 + b_2 = - 3 4b0+2b1+b2=3 b 0 + b 1 + b 2 = 40 b_0 + b_1 + b_2 = 40 b0+b1+b2=40
  解方程,求得:
b 0 = 14 ,    b 1 = − 85 ,    b 2 = 111 b_0 = 14,\,\,b_1 = - 85,\,\,b_2 = 111 b0=14,b1=85,b2=111

  所以系统的差分方程为:

y [ n ] − 7 y [ n − 1 ] + 10 y [ n − 2 ] = 14 x [ n ] − 85 x [ n − 1 ] + 111 x [ n − 2 ] y\left[ n \right] - 7y\left[ {n - 1} \right] + 10y\left[ {n - 2} \right] = 14x\left[ n \right] - 85x\left[ {n - 1} \right] + 111x\left[ {n - 2} \right] y[n]7y[n1]+10y[n2]=14x[n]85x[n1]+111x[n2]

(2)第二小问

  根据线性是不变系统的特性可知:

  当输入为 x 1 [ n ] = u [ n − 10 ] x_1 \left[ n \right] = u\left[ {n - 10} \right] x1[n]=u[n10]时,输出为: y 1 [ n ] = [ 2 n − 10 + 3 ⋅ 5 n − 10 + 10 ] u [ n − 10 ] y_1 \left[ n \right] = \left[ {2^{n - 10} + 3 \cdot 5^{n - 10} + 10} \right]u\left[ {n - 10} \right] y1[n]=[2n10+35n10+10]u[n10]

  当输入为: x 2 [ n ] = 2 u [ n ] x_2 \left[ n \right] = 2u\left[ n \right] x2[n]=2u[n]时,输出为: y 2 [ n ] = 2 y [ n ] = 2 [ 2 n + 3 ⋅ 5 n + 10 ] u [ n ] y_2 \left[ n \right] = 2y\left[ n \right] = 2\left[ {2^n + 3 \cdot 5^n + 10} \right]u\left[ n \right] y2[n]=2y[n]=2[2n+35n+10]u[n]

  所以当输入为: x [ n ] = 2 { u [ n ] − u [ n − 10 ] } x\left[ n \right] = 2\left\{ {u\left[ n \right] - u\left[ {n - 10} \right]} \right\} x[n]=2{ u[n]u[n10]} 时的系统输出为:

y [ n ] = 2 { [ 2 n + 3 ⋅ 5 n + 10 ] u [ n ] − [ 2 n − 10 + 3 ⋅ 5 n − 10 + 10 ] u [ n − 10 ] } y\left[ n \right] = 2\left\{ {\left[ {2^n + 3 \cdot 5^n + 10} \right]u\left[ n \right] - \left[ {2^{n - 10} + 3 \cdot 5^{n - 10} + 10} \right]u\left[ {n - 10} \right]} \right\} y[n]=2{ [2n+35n+10]u[n][2n10+35n10+10]u[n10]}

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124287490