搭建神经网络八股

搭建神经网络八股基本骨架:


# 搭建模块化的神经网络八股:

# 前向传播就是搭建网络。设计网络结构(forword.py)

 

 

def forward(x, regularizer):

    w =

    b =

    y =

    return y

 

 

def get_weight(shape, regularizer):

    w = tf.Variable()

    tf.add_to_collection('losses', tf.contrib.l2_regularizer(regularizer)(w))

    return w

 

# shape表示b的形状,就是某层中b的个数

 

 

def get_bias(shape):

    b = tf.Variable()

    return b

 

# 反向传播就是训练网络,优化网络参数(backward.py)

 

 

def backward():

    x = tf.placeholder()

    y_ = tf.placeholder()

    y = forward.forward(x, REGULARIZER)

    # 轮数计数器

    global_step = tf.Variable(0, trainable=False)

    loss =

 

 

'''

正则化:

    loss可以是:

    均方误差:y与y_的差距(loss_mse) = tf.reduce_mean(tf.square(y-y_))

    交叉熵:ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

    y与y_的差距(cem) = tf.reduce_mean(ce)

    加入正则化后,则还要加上:

    loss = y与y_的差距 + tf.add_n(tf.get_collection('losses'))

'''

# 若使用,指数衰减学习率,则加上:

learning_rate = tf.train.exponential_decay(

    LEARNING_RATE_BASE,

    global_step,

    数据样本数/BATCH_SIZE,

    LEARNING_RATE_DECAY,

    staircase=True)

 

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step}

 

# 滑动平均:

ema = tf.train.ExponentialMovingAverage(MOVlNG_AVERAGE_DECAY, global_step)

ema_op = ema.apply(tf.trainable_variables()}

with tf.control_dependencies([train_step, ema.op]):

    train.op = tf.no_op(name='train')

 

 

with tf.Session() as sess:

    init.op = tf.global_Variables_initializer()

    sess.run(init_op)

 

    for i in range(STEPS):

        sess.run(train_step, feed_dict={x:, y_: })

        if i % 轮数 == 0:

            print()

 

# 判断python运行的文件是否是主文件,若是主文件,则执行backward()函数

if __name__ == '__main__':

    backward()

1.导入模块,生成模拟数据集


#coding:utf-8

#0 导入模块,生成模拟数据集

import numpy as np

import matplotlib.pyplot as plt

seed = 2

def generateds():

	#基于seed生成随机数

	rdm = np.random.RandomState(seed)

	#随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集

	X = rdm.randn(300,2)

	Y_= [int(x0*x0+x1*x1 < 2) for (x0,x1) in X]

	Y_c = [['red' if y else 'blue'] for y in Y_]

	

	X = np.vstack(X).reshape(-1,2)

	Y_= np.vstack(Y_).reshape(-1,1)

 

	return X,Y_,Y_c

2.定义神经网络的输入,参数和输出,定义前向传播过程


#定义神经网络的输入,参数和输出,定义前向传播过程

def get_weight(shape,regularizer):

	w = tf.Variable(tf.random_normal(shape),dtype=tf.float32)

	tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))

	return w

 

def get_bias(shape):

	b = tf.Variable(tf.constant(0.01,shape=shape))

	return b

 

def forward(x,regularizer):

	w1 = get_weight([2,11],regularizer)

	b1 = get_bias([11])

	y1 = tf.nn.relu(tf.matmul(x,w1)+b1)

 

	w2 = get_weight([11,1],regularizer)

	b2 = get_bias([1])

	y = tf.matmul(y1,w2)+b2

 

	return y

反向传播优化模型


#coding:utf-8

#0 导入模块,生成模拟数据集

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import opt4_8_generateds

import opt4_8_forward

 

STEPS = 40000

BATCH_SIZE = 30

LEARNING_RATE_BASE = 0.001

LEARNING_RATE_DECAY = 0.999

REGULARIZER = 0.01

 

def backward():

	x = tf.placeholder(tf.float32,shape = (None, 2))

	y_= tf.placeholder(tf.float32, shape = (None,1))

	X, Y_, Y_c = opt4_8_generateds.generateds()

	y = opt4_8_forward.forward(x, REGULARIZER)

	global_step = tf.Variable(0,trainable=False)

	learning_rate = tf.train.exponential_decay(

		LEARNING_RATE_BASE,

		global_step,

		300/BATCH_SIZE,

		LEARNING_RATE_DECAY,

		staircase=True)

	#定义损失函数

	loss_mse = tf.reduce_mean(tf.square(y-y_))

	loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))

 

	#定义反向传播方法:包含正则化

	train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss_total)

 

	with tf.Session() as sess:

		init_op = tf.global_variables_initializer()

		sess.run(init_op)

		for i in range(STEPS):

			start = (i*BATCH_SIZE)%300

			end = start+BATCH_SIZE

			sess.run(train_step,feed_dict={x : X[start:end],y_ : Y_[start:end]})

			if i%2000 == 0:

				loss_v = sess.run(loss_total,feed_dict = {x:X,y_:Y_})

				print("After %d steps, loss is : %f" %(i, loss_v))

		

		xx, yy = np.mgrid[-3:3:.01,-3:3:.01]

		grid = np.c_[xx.ravel(), yy.ravel()]

		probs = sess.run(y, feed_dict={x:grid})

		probs = probs.reshape(xx.shape)

 

	plt.scatter(X[:,0],X[:,1], c = np.squeeze(Y_c))

	plt.contour(xx,yy,probs,levels=[.5])

	plt.show()

 

if __name__=='__main__':

	backward()

猜你喜欢

转载自blog.csdn.net/Stybill_LV_/article/details/105812816