关于齐次坐标的理解(经典)

http://blog.csdn.net/janestar/article/details/44244849


齐次坐标在电脑图形内无处不在,因为该坐标允许平移、旋转、缩放透视投影等可表示为矩阵与向量相乘的一般向量运算。依据链式法则,任何此类运算的序列均可相乘为单一个矩阵,从而实现简单且有效之处理。与此相反,若使用笛卡儿坐标,平移及透视投影不能表示成矩阵相乘,虽然其他的运算可以。现在的OpenGL及Direct3D图形卡均利用齐次坐标的优点,以具4个暂存器的向量处理器来实作顶点着色引擎。

引进齐次坐标有什么必要,它有什么优点呢?
许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p' = m1*p+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p' = p*M的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
其次,它可以表示无穷远的点。

问题:两条平行线可以相交于一点
在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。
然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线在无穷远处交于一点。

欧氏空间(或者笛卡尔空间)描述2D/3D几何非常适合,但是这种方法却不适合处理透视空间的问题(实际上,欧氏几何是透视几何的一个子集合),2维笛卡尔坐标可以表示为(x,y)。

如果一个点在无穷远处,这个点的坐标将会(∞,∞),在欧氏空间,这变得没有意义。平行线在透视空间的无穷远处交于一点,但是在欧氏空间却不能,数学家发现了一种方式来解决这个问题。

方法:齐次坐标
简而言之,齐次坐标就是用N+1维来代表N维坐标

我们可以在一个2D笛卡尔坐标末尾加上一个额外的变量w来形成2D齐次坐标,因此,一个点(X,Y)在齐次坐标里面变成了(x,y,w),并且有

X = x/w

Y = y/w

例如,笛卡尔坐标系下(1,2)的齐次坐标可以表示为(1,2,1),如果点(1,2)移动到无限远处,在笛卡尔坐标下它变为(∞,∞),然后它的齐次坐标表示为(1,2,0),因为(1/0, 2/0) = (∞,∞),我们可以不用”∞"来表示一个无穷远处的点了,哈哈。

为什么叫齐次坐标?

我们把齐次坐标转化为笛卡尔坐标的方法是前面n-1个坐标分量分别除以最后一个分量即可。







转化齐次坐标到笛卡尔坐标的过程中,我们有一个发现,例如:





你会发现(1, 2, 3), (2, 4, 6) 和(4, 8, 12)对应同一个Euclidean point (1/3, 2/3),任何标量的乘积,例如(1a, 2a, 3a) 对应 笛卡尔空间里面的(1/3, 2/3) 。因此,这些点是“齐次的”,因为他们代表了笛卡尔坐标系里面的同一个点。换句话说,齐次坐标有规模不变性。

证明:两条直线可以相交

考虑如下方程组:




我们知道在笛卡尔坐标系里面,该方程组无解,因为C ≠ D,如果C=D,两条直线就相同了。

让我们在透视空间里面,用齐次坐标x/w, y/w代替x ,y,




现在我们有一个解(x, y, 0),两条直线相交于(x, y, 0),这个点在无穷远处。

小结:齐次坐标在图形学中是一个非常基础的概念,例如3D场景映射到2D场景的过程中

参考: http://www.songho.ca/math/homogeneous/homogeneous.html

参考:https://baike.baidu.com/item/%E9%BD%90%E6%AC%A1%E5%9D%90%E6%A0%87/511284?fr=aladdin

这里讲的也很详细 ::  https://wenku.baidu.com/view/cf41ade8eff9aef8951e0661.html

猜你喜欢

转载自blog.csdn.net/weixin_42339460/article/details/80708946