广义(通用)卡尔曼-布什(Kalman-Bucy)滤波器详细推导过程(全网独家)


本文共1.6万字,所有文本和markdown公式都手动码字完成。分享和码字不易,希望得到您的一个收藏点赞和关注,您的支持就是我更新的最大动力!

1. Kalman-Bucy滤波器及系统背景

Kalman-Bucy滤波器本质上是一种针对线性系统的滤波器,可以在系统中存在高斯白噪声时对系统的内禀信号进行滤波,从而得到相对纯净、相对接近内禀信号的测量信号。

设滤波器的输出信号(亦即测量信号)为 Y ( t ) \mathbf{Y}(t) Y(t),滤波器的输入信号(即系统的内禀信号,或称有用信号)为 X ( t ) \mathbf{X}(t) X(t)。滤波器的作用,就是将系统中的状态量 X ( t ) \mathbf{X}(t) X(t)在噪声影响下,借助测量值 Y ( t ) \mathbf{Y}(t) Y(t),正确估计出来系统中的内禀(有用)信号。

系统中的有用信号可以表示为
X ˙ ( t ) = A ( t ) X ( t ) + G ( t ) N 1 ( t ) , A ∈ R n × n , G ∈ R n × p (1) \mathbf{\dot X} (t) = \mathbf{A}(t) \mathbf{X}(t) + \mathbf{G}(t)\mathbf{N}_1(t), \quad \mathbf{A} \in \mathbb{R}^{ n \times n}, \mathbf{G} \in \mathbb{R}^{n \times p} \tag{1} X˙(t)=A(t)X(t)+G(t)N1(t),ARn×n,GRn×p(1)其中,初始条件为 X ( t 0 ) = X 0 \mathbf{X}(t_0) = \mathbf{X}^0 X(t0)=X0 N 1 ( t ) \mathbf{N}_1(t) N1(t)高斯白噪声,是系统在运行中所具有的噪声,具有如下期望值和方差:
M { N 1 ( t ) } = 0 ; R N 1 N 1 ( t , τ ) = M { N 1 ( t ) N 1 T ( t ) } = S 1 ( t ) δ ( t − τ ) M\left\{ \mathbf{N}_1(t) \right\} = 0; \quad \mathbf{R}_{\mathbf{N}_1 \mathbf{N}_1} (t, \tau) = M\left\{ \mathbf{N}_1(t) \mathbf{N}_1^{\rm T}(t) \right\} = \mathbf{S}_1 (t) \delta (t - \tau) M{ N1(t)}=0;RN1N1(t,τ)=M{ N1(t)N1T(t)}=S1(t)δ(tτ)其中 S 1 ( t ) \mathbf{S}_1(t) S1(t)为表征噪声信号强度的对称正定矩阵,这意味着 S 1 T ( t ) = S 1 ( t ) \mathbf{S}_1^{\rm T}(t) = \mathbf{S}_1(t) S1T(t)=S1(t)

另外,假设有用信号初值的期望已知:
X ˉ 0 = M { X 0 } = 0 \bar{ \mathbf{X} }^0 = M\left\{ \mathbf{X}^0 \right\} = 0 Xˉ0=M{ X0}=0方差已知:
D 00 = M { ( X 0 − X ˉ 0 ) ( X 0 − X ˉ 0 ) T } = 0 \mathbf{D}_{00} = M\left\{ \left( \mathbf{X}^0 - \bar{\mathbf{X}}^0 \right) \left( \mathbf{X}^0 - \bar{\mathbf{X}}^0 \right)^{\rm T} \right\} = 0 D00=M{ (X0Xˉ0)(X0Xˉ0)T}=0

再设系统的输出信号 Y ( t ) \mathbf{Y}(t) Y(t)具有如下形式
Y ( t ) = C ( t ) X ( t ) + N 2 ( t ) , C ∈ R l × n (2) \mathbf{Y}(t) = \mathbf{C}(t) \mathbf{X}(t) + \mathbf{N}_2(t), \quad \mathbf{C} \in \mathbb{R}^{ l \times n} \tag{2} Y(t)=C(t)X(t)+N2(t),CRl×n(2)其中 N 2 ( t ) \mathbf{N}_2(t) N2(t)亦为高斯白噪声,是测量时的测量噪声:
M { N 2 ( t ) } = 0 ; R N 2 N 2 ( t , τ ) = M { N 2 ( t ) N 2 T ( t ) } = S 2 ( t ) δ ( t − τ ) M\left\{ \mathbf{N}_2(t) \right\} = 0; \quad \mathbf{R}_{\mathbf{N}_2 \mathbf{N}_2} (t, \tau) = M\left\{ \mathbf{N}_2(t) \mathbf{N}_2^{\rm T}(t) \right\} = \mathbf{S}_2 (t) \delta (t - \tau) M{ N2(t)}=0;RN2N2(t,τ)=M{ N2(t)N2T(t)}=S2(t)δ(tτ)设滤波器的滤波误差为
X σ ( t ) = X ( t ) − X ^ ( t ) \mathbf{X}_\sigma (t) = \mathbf{X}(t) - \hat{\mathbf{X} } (t) Xσ(t)=X(t)X^(t)滤波器的设计应当满足如下条件,使得滤波器得到的状态估计量为无偏的,且估计误差的均方差 M { ∥ X σ ( t ) ∥ 2 } M\left\{ \Vert \mathbf{X}_\sigma (t) \Vert ^2 \right\} M{ Xσ(t)2}最小

2. 系统中相关关系整理

(1) 假设有用信号初值 X 0 \mathbf{X}^0 X0与系统噪声 N 1 ( t ) \mathbf{N}_1(t) N1(t)、测量噪声 N 2 ( t ) \mathbf{N}_2(t) N2(t)之间无关:
M { X 0 N 1 } = 0 , M { X 0 N 2 } = 0 M\left\{ \mathbf{X}^0 \mathbf{N}_1 \right\} = 0, \quad M\left\{ \mathbf{X}^0 \mathbf{N}_2 \right\} = 0 M{ X0N1}=0,M{ X0N2}=0(2) 而假设系统噪声 N 1 ( t ) \mathbf{N}_1(t) N1(t)与测量噪声 N 2 ( t ) \mathbf{N}_2(t) N2(t)之间具有如下相关关系(注意!通常认为二者不具有相关关系,但此处二者是具有相关关系的!
M { N 1 ( t ) N 2 T ( τ ) } = S 3 ( t ) δ ( t − τ ) M\left\{ \mathbf{N}_1(t) \mathbf{N}_2^{\rm T}(\tau) \right\} = \mathbf{S}_3 (t) \delta (t - \tau) M{ N1(t)N2T(τ)}=S3(t)δ(tτ)其中 S 3 ( t ) \mathbf{S}_3 (t) S3(t)为对称正定矩阵,因此 S 3 T ( t ) = S 3 ( t ) \mathbf{S}_3^{\rm T}(t) = \mathbf{S}_3(t) S3T(t)=S3(t)

(3) 式(1)给出了系统的微分方程表达式。当然,可以借助状态转移矩阵的思想,将(1)式两边积分,就可以得到系统状态 X ( t ) \mathbf{X}(t) X(t)在任意时刻 ∀ t ≥ t 0 \forall t \geq t_0 tt0的值:
X ( t ) = Φ ( t , t 0 ) X ( t 0 ) + ∫ t 0 t Φ ( t , s ) G ( s ) N 1 ( s ) d s \mathbf{X}(t) = \mathbf{\Phi}(t, t_0) \mathbf{X}(t_0) + \int_{t_0}^t \mathbf{\Phi}(t, {\rm s}) \mathbf{G}({\rm s}) \mathbf{N}_1({\rm s}) d{\rm s} X(t)=Φ(t,t0)X(t0)+t0tΦ(t,s)G(s)N1(s)ds其中 Φ ( t , t 0 ) \mathbf{\Phi}(t, t_0) Φ(t,t0)为状态转移矩阵,利用它和初值可以得到任意时刻的状态值。那么,可以求解状态量 X ( t ) \mathbf{X}(t) X(t)和测量噪声 N 2 ( t ) \mathbf{N}_2(t) N2(t)之间的相关关系:
M { X ( t ) N 2 T ( τ ) } = M { Φ ( t , t 0 ) X ( t 0 ) N 2 T ( τ ) + ∫ t 0 t Φ ( t , s ) G ( s ) N 1 ( s ) d s N 2 T ( τ ) } = Φ ( t , t 0 ) M { X ( t 0 ) N 2 T ( τ ) } + ∫ t 0 t Φ ( t , s ) G ( s ) M { N 1 ( s ) N 2 T ( τ ) } d s = 0 + ∫ t 0 t Φ ( t , s ) G ( s ) ⋅ S 3 ( t ) δ ( t − τ ) d s = Φ ( t , τ ) G ( τ ) S 3 ( τ ) , ( t 0 ≤ τ ≤ t ) \begin{aligned} M\left\{ \mathbf{X}(t) \mathbf{N}_2^{\rm T} (\tau) \right\} &= M\left\{ \mathbf{\Phi}(t, t_0) \mathbf{X}(t_0) \mathbf{N}_2^{\rm T} (\tau) + \int_{t_0}^t \mathbf{\Phi}(t, {\rm s}) \mathbf{G}({\rm s}) \mathbf{N}_1({\rm s}) d{\rm s} \mathbf{N}_2^{\rm T}(\tau) \right\} \\ &= \mathbf{\Phi}(t, t_0) M\left\{ \mathbf{X}(t_0) \mathbf{N}_2^{\rm T} (\tau) \right\} + \int_{t_0}^t \mathbf{\Phi}(t, {\rm s}) \mathbf{G}({\rm s}) M \left\{ \mathbf{N}_1({\rm s}) \mathbf{N}_2^{\rm T}(\tau) \right\} d{\rm s} \\ &= 0 + \int_{t_0}^t \mathbf{\Phi}(t, {\rm s}) \mathbf{G}({\rm s}) \cdot \mathbf{S}_3 (t) \delta (t - \tau) d{\rm s} \\ &= \mathbf{\Phi}(t, \tau) \mathbf{G}(\tau) \mathbf{S}_3(\tau), \quad \left( t_0 \leq \tau \leq t \right) \end{aligned} M{ X(t)N2T(τ)}=M{ Φ(t,t0)X(t0)N2T(τ)+t0tΦ(t,s)G(s)N1(s)dsN2T(τ)}=Φ(t,t0)M{ X(t0)N2T(τ)}+t0tΦ(t,s)G(s)M{ N1(s)N2T(τ)}ds=0+t0tΦ(t,s)G(s)S3(t)δ(tτ)ds=Φ(t,τ)G(τ)S3(τ),(t0τt)
滤波器的任务,就是根据测量值 Y ( t ) \mathbf{Y}(t) Y(t)得到状态量 X ( t ) \mathbf{X}(t) X(t)的估计,且该估计为无偏的和最小误差均方差的

3. 公式推导

(1) 无偏估计条件

设所求的线性滤波器的估计值 X ^ ( t ) \hat {\mathbf{X} }(t) X^(t)可以描述为
X ^ ˙ ( t ) = F ( t ) X ^ ( t ) + K ϕ ( t ) Y ( t ) (3) \dot{ \hat{ \mathbf{X} } } (t) = \mathbf{F}(t) \hat {\mathbf{X} }(t) + \mathbf{K}_\phi(t) \mathbf{Y}(t) \tag{3} X^˙(t)=F(t)X^(t)+Kϕ(t)Y(t)(3)为满足无偏估计的条件,需要有
M { X ^ ( t ) } = M { X ( t ) } = X ˉ ( t ) (4) M\left\{ \hat {\mathbf{X} }(t) \right\} = M\left\{ \mathbf{X}(t) \right\} = \bar {\mathbf{X} }(t) \tag{4} M{ X^(t)}=M{ X(t)}=Xˉ(t)(4)对式(3)两边取期望有
M { X ^ ˙ ( t ) } = F ( t ) M { X ^ ( t ) } + K ϕ ( t ) M { Y ( t ) } (5) M\left\{ \dot{ \hat{ \mathbf{X} } } (t) \right\} = \mathbf{F}(t) M\left\{ \hat {\mathbf{X} }(t) \right\} + \mathbf{K}_\phi(t) M\left\{ \mathbf{Y}(t) \right\} \tag{5} M{ X^˙(t)}=F(t)M{ X^(t)}+Kϕ(t)M{ Y(t)}(5)又由式(2)有 Y ( t ) = C ( t ) X ( t ) + N 2 ( t ) \mathbf{Y}(t) = \mathbf{C}(t) \mathbf{X}(t) + \mathbf{N}_2(t) Y(t)=C(t)X(t)+N2(t),对式(2)两边取期望有
M { Y ( t ) } = M { C ( t ) X ( t ) + N 2 ( t ) } = M { C ( t ) X ( t ) } + M { N 2 ( t ) } = C ( t ) X ˉ ( t ) + 0 = C ( t ) X ˉ ( t ) \begin{aligned} M\left\{ \mathbf{Y}(t) \right\} &= M\left\{ \mathbf{C}(t) \mathbf{X}(t) + \mathbf{N}_2(t) \right\} \\ &= M\left\{ \mathbf{C}(t) \mathbf{X}(t) \right\} + M\left\{ \mathbf{N}_2(t) \right\}\\ &= \mathbf{C}(t) \bar {\mathbf{X} }(t) + 0 \\ &= \mathbf{C}(t) \bar {\mathbf{X} }(t) \end{aligned} M{ Y(t)}=M{ C(t)X(t)+N2(t)}=M{ C(t)X(t)}+M{ N2(t)}=C(t)Xˉ(t)+0=C(t)Xˉ(t)代入式(5)并根据式(4)有
M { X ^ ˙ ( t ) } = F ( t ) M { X ^ ( t ) } + K ϕ ( t ) M { Y ( t ) } = F ( t ) M { X ^ ( t ) } + K ϕ ( t ) ⋅ C ( t ) X ˉ ( t ) = F ( t ) M { X ^ ( t ) } + K ϕ ( t ) ⋅ C ( t ) M { X ^ ( t ) } = [ F ( t ) + K ϕ ( t ) C ( t ) ] ⋅ M { X ^ ( t ) } (6) \begin{aligned} M\left\{ \dot{ \hat{ \mathbf{X} } } (t) \right\} &= \mathbf{F}(t) M\left\{ \hat {\mathbf{X} }(t) \right\} + \mathbf{K}_\phi(t) M\left\{ \mathbf{Y}(t) \right\} \\ &= \mathbf{F}(t) M\left\{ \hat {\mathbf{X} }(t) \right\} + \mathbf{K}_\phi(t) \cdot \mathbf{C}(t) \bar {\mathbf{X} }(t) \\ &= \mathbf{F}(t) M\left\{ \hat {\mathbf{X} }(t) \right\} + \mathbf{K}_\phi(t) \cdot \mathbf{C}(t) M\left\{ \hat {\mathbf{X} }(t) \right\} \\ &= \left[ \mathbf{F}(t) + \mathbf{K}_\phi(t) \mathbf{C}(t) \right] \cdot M\left\{ \hat {\mathbf{X} }(t) \right\} \end{aligned} \tag{6} M{ X^˙(t)}=F(t)M{ X^(t)}+Kϕ(t)M{ Y(t)}=F(t)M{ X^(t)}+Kϕ(t)C(t)Xˉ(t)=F(t)M{ X^(t)}+Kϕ(t)C(t)M{ X^(t)}=[F(t)+Kϕ(t)C(t)]M{ X^(t)}(6)另一方面,对式(1)两边取数学期望有(考虑到噪声的期望为0)
X ˉ ˙ ( t ) = A ( t ) X ˉ ( t ) (7) \dot{ \bar{ \mathbf{X} } }(t) = \mathbf{A}(t) \bar{ \mathbf{X} }(t) \tag{7} Xˉ˙(t)=A(t)Xˉ(t)(7)根据式(4)可以看出,式(6)和式(7)的等号右边应该相等,那么
F ( t ) + K ϕ ( t ) C ( t ) = A ( t ) \mathbf{F}(t) + \mathbf{K}_\phi(t) \mathbf{C}(t) = \mathbf{A}(t) F(t)+Kϕ(t)C(t)=A(t) F ( t ) = A ( t ) − K ϕ ( t ) C ( t ) (8) \mathbf{F}(t) = \mathbf{A}(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \tag{8} F(t)=A(t)Kϕ(t)C(t)(8)反代回式(3),得到滤波器的结构
X ^ ˙ ( t ) = [ A ( t ) − K ϕ ( t ) C ( t ) ] X ^ ( t ) + K ϕ ( t ) Y ( t ) (9) \dot{ \hat{ \mathbf{X} } } (t) = \left[ \mathbf{A}(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \right] \hat {\mathbf{X} }(t) + \mathbf{K}_\phi(t) \mathbf{Y}(t) \tag{9} X^˙(t)=[A(t)Kϕ(t)C(t)]X^(t)+Kϕ(t)Y(t)(9)应当注意的是,估计值 X ^ \hat{ \mathbf{X} } X^的初值应当尽可能接近真值,即 X ^ ( t 0 ) = X ˉ 0 \hat{ \mathbf{X} }(t_0) = \bar{ \mathbf{X} }^0 X^(t0)=Xˉ0,此时的滤波器才有效

(2) 最小误差均方差条件

最小误差均方差条件表示为
M { ∥ X σ ( t ) ∥ 2 } → min ⁡ K ϕ ( t ) M\left\{ \Vert \mathbf{X}_\sigma (t) \Vert ^2 \right\} \rightarrow \min_{\mathbf{K}_\phi (t) } M{ Xσ(t)2}Kϕ(t)min其中 X σ ( t ) = X ( t ) − X ^ ( t ) \mathbf{X}_\sigma (t) = \mathbf{X}(t) - \hat{ \mathbf{X} }(t) Xσ(t)=X(t)X^(t)
不难看出:
M { ∥ X σ ( t ) ∥ 2 } = t r [ D σ σ ( t ) ] (10) M\left\{ \Vert \mathbf{X}_\sigma (t) \Vert ^2 \right\} = {\rm tr} \left[ \mathbf{D}_{\sigma \sigma}(t) \right] \tag{10} M{ Xσ(t)2}=tr[Dσσ(t)](10)其中 D X X ( t ) \mathbf{D}_{XX} (t) DXX(t)表示 X ( t ) \mathbf{X}(t) X(t)方差,即 D X X ( t ) = M { ( X − X ˉ ) ( X − X ˉ ) T } \mathbf{D}_{XX} (t) = M \left\{ \left( \mathbf{X} - \bar{ \mathbf{X} } \right) \left( \mathbf{X} - \bar{ \mathbf{X} } \right)^{\rm T} \right\} DXX(t)=M{ (XXˉ)(XXˉ)T}
对误差求导有(用到式(2)(9))
X ˙ σ ( t ) = X ˙ ( t ) − X ^ ˙ ( t ) = [ A ( t ) X ( t ) + G ( t ) N 1 ( t ) ] − { [ A ( t ) − K ϕ ( t ) C ( t ) ] X ^ ( t ) + K ϕ ( t ) Y ( t ) } = A ( t ) X ( t ) + G ( t ) N 1 ( t ) − A ( t ) X ^ ( t ) + K ϕ ( t ) C ( t ) X ^ ( t ) − K ϕ ( t ) Y ( t ) = A ( t ) [ X ( t ) − X ^ ( t ) ] + G ( t ) N 1 ( t ) + K ϕ ( t ) C ( t ) X ^ ( t ) − K ϕ ( t ) [ C ( t ) X ( t ) + N 2 ( t ) ] = A ( t ) X σ ( t ) + G ( t ) N 1 ( t ) − K ϕ ( t ) N 2 ( t ) − K ϕ ( t ) C ( t ) X σ ( t ) = [ A ( t ) − K ϕ ( t ) C ( t ) ] X σ ( t ) + G ( t ) N 1 ( t ) − K ϕ ( t ) N 2 ( t ) = [ A ( t ) − K ϕ ( t ) C ( t ) ] X σ ( t ) + u = A ~ ( t ) X σ ( t ) + u (11) \begin{aligned} \dot{ \mathbf{X} }_\sigma (t) &= \dot{ \mathbf{X} }(t) - \dot{ \hat{ \mathbf{X} } }(t) \\ &= \left[ \mathbf{A}(t) \mathbf{X}(t) + \mathbf{G}(t) \mathbf{N}_1(t) \right] - \left\{ \left[ \mathbf{A}(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \right] \hat {\mathbf{X} }(t) + \mathbf{K}_\phi(t) \mathbf{Y}(t) \right\} \\ &= \mathbf{A}(t) \mathbf{X}(t) + \mathbf{G}(t) \mathbf{N}_1(t) - \mathbf{A}(t) \hat {\mathbf{X} }(t) + \mathbf{K}_\phi(t) \mathbf{C}(t) \hat {\mathbf{X} }(t) - \mathbf{K}_\phi(t) \mathbf{Y}(t) \\ &= \mathbf{A}(t) \left[ \mathbf{X}(t) - \hat {\mathbf{X} }(t) \right] + \mathbf{G}(t) \mathbf{N}_1(t) + \mathbf{K}_\phi(t) \mathbf{C}(t) \hat {\mathbf{X} }(t) - \mathbf{K}_\phi(t) \left[ \mathbf{C}(t) \mathbf{X}(t) + \mathbf{N}_2(t) \right] \\ &= \mathbf{A}(t) \mathbf{X}_\sigma(t) + \mathbf{G}(t) \mathbf{N}_1(t) - \mathbf{K}_\phi(t) \mathbf{N}_2(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \mathbf{X}_\sigma(t) \\ &= \left[ \mathbf{A}(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \right] \mathbf{X}_\sigma(t) + \mathbf{G}(t) \mathbf{N}_1(t) - \mathbf{K}_\phi(t) \mathbf{N}_2(t) \\ &= \left[ \mathbf{A}(t) - \mathbf{K}_\phi(t) \mathbf{C}(t) \right] \mathbf{X}_\sigma(t) + \mathbf{u} \\ &= \tilde{ \mathbf{A} }(t) \mathbf{X}_\sigma(t) + \mathbf{u} \end{aligned} \tag{11} X˙σ(t)=X˙(t)X^˙(t)=[A(t)X(t)+G(t)N1(t)]{ [A(t)Kϕ(t)C(t)]X^(t)+Kϕ(t)Y(t)}=A(t)X(t)+G(t)N1(t)A(t)X^(t)+Kϕ(t)C(t)X^(t)Kϕ(t)Y(t)=A(t)[X(t)X^(t)]+G(t)N1(t)+Kϕ(t)C(t)X^(t)Kϕ(t)[C(t)X(t)+N2(t)]=A(t)Xσ(t)+G(t)N1(t)Kϕ(t)N2(t)Kϕ(t)C(t)Xσ(t)=[A(t)Kϕ(t)C(t)]Xσ(t)+G(t)N1(t)Kϕ(t)N2(t)=[A(t)Kϕ(t)C(t)]Xσ(t)+u=A~(t)Xσ(t)+u(11)其中
u ( t ) = G ( t ) N 1 ( t ) − K ϕ ( t ) N 2 ( t ) , M { u ( t ) } = 0 \mathbf{u}(t) = \mathbf{G}(t) \mathbf{N}_1(t) - \mathbf{K}_\phi(t) \mathbf{N}_2(t),\quad M\left\{ \mathbf{u}(t) \right\} = 0 u(t)=G(t)N1(t)Kϕ(t)N2(t),M{ u(t)}=0且初始条件 X σ ( t ) = X ( t 0 ) − X ˉ 0 \mathbf{X}_\sigma(t) = \mathbf{X}(t_0) - \bar{ \mathbf{X} }^0 Xσ(t)=X(t0)Xˉ0

对于 u ( t ) \mathbf{u}(t) u(t)来说,其方差(式中省略 ( t ) (t) (t)以便书写)
M { u ( t ) u T ( τ ) } = M { [ G N 1 − K ϕ N 2 ] ⋅ [ G N 1 − K ϕ N 2 ] T } = M { [ G N 1 − K ϕ N 2 ] ⋅ [ N 1 T G T − N 2 T K ϕ T ] } = M { G N 1 N 1 T G T − G N 1 N 2 T K ϕ T − K ϕ N 2 N 1 T G T + K ϕ N 2 N 2 T K ϕ T } = M { G N 1 N 1 T G T } − M { G N 1 N 2 T K ϕ T } − M { K ϕ N 2 N 1 T G T } + M { K ϕ N 2 N 2 T K ϕ T } \begin{aligned} M\left\{ \mathbf{u}(t) \mathbf{u}^{\rm T}(\tau) \right\} &= M\left\{ \left[ \mathbf{G} \mathbf{N}_1 - \mathbf{K}_\phi \mathbf{N}_2 \right] \cdot \left[ \mathbf{G} \mathbf{N}_1 - \mathbf{K}_\phi \mathbf{N}_2 \right]^{\rm T} \right\} \\ &= M\left\{ \left[ \mathbf{G} \mathbf{N}_1 - \mathbf{K}_\phi \mathbf{N}_2 \right] \cdot \left[ \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} - \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right] \right\} \\ &= M\left\{ \mathbf{G} \mathbf{N}_1 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} - \mathbf{G} \mathbf{N}_1 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} - \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} + \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right\} \\ &= M\left\{ \mathbf{G} \mathbf{N}_1 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} \right\} - M\left\{ \mathbf{G} \mathbf{N}_1 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right\} - M\left\{ \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} \right\} + M\left\{ \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right\} \end{aligned} M{ u(t)uT(τ)}=M{ [GN1KϕN2][GN1KϕN2]T}=M{ [GN1KϕN2][N1TGTN2TKϕT]}=M{ GN1N1TGTGN1N2TKϕTKϕN2N1TGT+KϕN2N2TKϕT}=M{ GN1N1TGT}M{ GN1N2TKϕT}M{ KϕN2N1TGT}+M{ KϕN2N2TKϕT}由于 M { N 1 ( t ) N 1 T ( t ) } = S 1 ( t ) δ ( t − τ ) , M { N 2 ( t ) N 2 T ( t ) } = S 2 ( t ) δ ( t − τ ) , M { N 1 ( t ) N 2 T ( τ ) } = S 3 ( t ) δ ( t − τ ) M\left\{ \mathbf{N}_1(t) \mathbf{N}_1^{\rm T}(t) \right\} = \mathbf{S}_1 (t) \delta (t - \tau),\quad M\left\{ \mathbf{N}_2(t) \mathbf{N}_2^{\rm T}(t) \right\} = \mathbf{S}_2 (t) \delta (t - \tau), \quad M\left\{ \mathbf{N}_1(t) \mathbf{N}_2^{\rm T}(\tau) \right\} = \mathbf{S}_3 (t) \delta (t - \tau) M{ N1(t)N1T(t)}=S1(t)δ(tτ),M{ N2(t)N2T(t)}=S2(t)δ(tτ),M{ N1(t)N2T(τ)}=S3(t)δ(tτ),于是上式变为
M { u ( t ) u T ( τ ) } = M { G N 1 N 1 T G T } − M { G N 1 N 2 T K ϕ T } − M { K ϕ N 2 N 1 T G T } + M { K ϕ N 2 N 2 T K ϕ T } = [ G S 1 G T − G ( t ) S 3 K ϕ T − K ϕ S 3 G T + K ϕ S 2 K ϕ T ] δ ( t − τ ) (12) \begin{aligned} M\left\{ \mathbf{u}(t) \mathbf{u}^{\rm T}(\tau) \right\} &= M\left\{ \mathbf{G} \mathbf{N}_1 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} \right\} - M\left\{ \mathbf{G} \mathbf{N}_1 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right\} - M\left\{ \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_1^{\rm T} \mathbf{G}^{\rm T} \right\} + M\left\{ \mathbf{K}_\phi \mathbf{N}_2 \mathbf{N}_2^{\rm T} \mathbf{K}_\phi^{\rm T} \right\} \\ &= \left[ \mathbf{G} \mathbf{S}_1 \mathbf{G}^{\rm T} - \mathbf{G}(t) \mathbf{S}_3 \mathbf{K}_\phi^{\rm T} - \mathbf{K}_\phi \mathbf{S}_3 \mathbf{G}^{\rm T} + \mathbf{K}_\phi \mathbf{S}_2 \mathbf{K}_\phi^{\rm T} \right] \delta(t - \tau) \tag{12} \end{aligned} M{ u(t)uT(τ)}=M{ GN1N1TGT}M{ GN1N2TKϕT}M{ KϕN2N1TGT}+M{ KϕN2N2TKϕT}=[GS1GTG(t)S3KϕTKϕS3GT+KϕS2KϕT]δ(tτ)(12)

(3) 误差的方差条件

这里不加证明地给出如下结论:
X ˙ ( t ) = A ( t ) X ( t ) + G ( t ) N 1 ( t ) \dot{ \mathbf{X} }(t) = \mathbf{A}(t) \mathbf{X}(t) + \mathbf{G}(t) \mathbf{N}_1(t) X˙(t)=A(t)X(t)+G(t)N1(t)时,其方差满足如下微分方程
D ˙ X X ( t ) = A ( t ) D X X ( t ) + D X X ( t ) A T ( t ) + G ( t ) S 1 ( t ) G T ( t ) (13) \dot{ \mathbf{D} }_{XX}(t) = \mathbf{A}(t) \mathbf{D}_{XX}(t) + \mathbf{D}_{XX}(t) \mathbf{A}^{\rm T}(t) + \mathbf{G}(t) \mathbf{S}_1(t) \mathbf{G}^{\rm T}(t) \tag{13} D˙XX(t)=A(t)DXX(t)+DXX(t)AT(t)+G(t)S1(t)GT(t)(13)那么,当 X ˙ σ ( t ) \dot{ \mathbf{X} }_\sigma(t) X˙σ(t)具有式(11)的形式时,代入式(13)可以得到估计误差 X σ ( t ) \mathbf{X}_\sigma(t) Xσ(t)的方差 D σ σ ( t ) \mathbf{D}_{\sigma \sigma}(t) Dσσ(t)满足的微分方程:
D ˙ σ σ ( t ) = A ~ ( t ) D X X ( t ) + D X X ( t ) A ~ T ( t ) + M { u ( t ) u T ( τ ) } / δ ( t − τ ) = [ A − K ϕ C ] D σ σ + D σ σ [ A − K ϕ C ] T + [ G S 1 G T − G S 3 K ϕ T − K ϕ S 3 G T + K ϕ S 2 K ϕ T ] = A ~ ( t ) D σ σ + D σ σ A ~ T ( t ) + G S 1 G T − G S 3 K ϕ T − K ϕ S 3 G T + K ϕ S 2 K ϕ T (14) \begin{aligned} \dot{ \mathbf{D} }_{\sigma \sigma}(t) &= \tilde{ \mathbf{A} }(t) \mathbf{D}_{XX}(t) + \mathbf{D}_{XX}(t) \tilde{ \mathbf{A} }^{\rm T}(t) + M\left\{ \mathbf{u}(t) \mathbf{u}^{\rm T}(\tau) \right\} / \delta(t - \tau) \\ &= \left[ \mathbf{A} - \mathbf{K}_\phi \mathbf{C} \right] \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \left[ \mathbf{A} - \mathbf{K}_\phi \mathbf{C} \right]^{\rm T} + \left[ \mathbf{G} \mathbf{S}_1 \mathbf{G}^{\rm T} - \mathbf{G} \mathbf{S}_3 \mathbf{K}_\phi^{\rm T} - \mathbf{K}_\phi \mathbf{S}_3 \mathbf{G}^{\rm T} + \mathbf{K}_\phi \mathbf{S}_2 \mathbf{K}_\phi^{\rm T} \right] \\ &= \tilde{ \mathbf{A} }(t) \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \tilde{ \mathbf{A} }^{\rm T}(t) + \mathbf{G} \mathbf{S}_1 \mathbf{G}^{\rm T} - \mathbf{G} \mathbf{S}_3 \mathbf{K}_\phi^{\rm T} - \mathbf{K}_\phi \mathbf{S}_3 \mathbf{G}^{\rm T} + \mathbf{K}_\phi \mathbf{S}_2 \mathbf{K}_\phi^{\rm T} \tag{14} \end{aligned} D˙σσ(t)=A~(t)DXX(t)+DXX(t)A~T(t)+M{ u(t)uT(τ)}/δ(tτ)=[AKϕC]Dσσ+Dσσ[AKϕC]T+[GS1GTGS3KϕTKϕS3GT+KϕS2KϕT]=A~(t)Dσσ+DσσA~T(t)+GS1GTGS3KϕTKϕS3GT+KϕS2KϕT(14)

(4) K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)的推导

现在滤波器的任务转化为求解 K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)使得 D σ σ ( t ) \mathbf{D}_{\sigma \sigma}(t) Dσσ(t)最小。可以想到,当方差 D σ σ ( t ) \mathbf{D}_{\sigma \sigma}(t) Dσσ(t)最小时,同样我们也期望方差稳定在该最小值附近不要变化,即其导数 D ˙ σ σ ( t ) \dot{ \mathbf{D} }_{\sigma \sigma}(t) D˙σσ(t)同样方差最小。表示为
min ⁡ K ϕ ( t ) { t r [ D σ σ ( t ) ] } → K ~ ϕ ∗ ( t ) max ⁡ K ϕ ( t ) { − t r [ D ˙ σ σ ( t ) ] } → K ~ ~ ϕ ∗ ( t ) \min_{ \mathbf{K}_\phi(t) } \left\{ {\rm tr} \left[ \mathbf{D}_{\sigma \sigma} (t) \right] \right\} \rightarrow \tilde{ \mathbf{K} }_\phi^* (t) \\ \max_{ \mathbf{K}_\phi(t) } \left\{ {\rm -tr} \left[ \dot{ \mathbf{D} }_{\sigma \sigma} (t) \right] \right\} \rightarrow \tilde{ \tilde{ \mathbf{K} } }_\phi^* (t) Kϕ(t)min{ tr[Dσσ(t)]}K~ϕ(t)Kϕ(t)max{ tr[D˙σσ(t)]}K~~ϕ(t)由于 K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)唯一,故
K ~ ϕ ∗ ( t ) = K ~ ~ ϕ ∗ ( t ) \tilde{ \mathbf{K} }_\phi^* (t) = \tilde{ \tilde{ \mathbf{K} } }_\phi^* (t) K~ϕ(t)=K~~ϕ(t)借助变分法知识并参照欧拉方程(这里我也不知道怎么得来的), K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)满足
∂ ∂ K ϕ ( t ) t r [ D ˙ σ σ ( t ) ] = 0 (15) \frac{\partial}{\partial \mathbf{K}_\phi(t)} {\rm tr} \left[ \dot{ \mathbf{D} }_{\sigma \sigma} (t) \right] = 0 \tag{15} Kϕ(t)tr[D˙σσ(t)]=0(15)

(5) 矩阵迹的求导

为了求解式(15),需要先介绍一些涉及到矩阵迹的求导公式:
∂ t r ( P Q P T ) ∂ P = P ( Q + Q T ) ∂ t r ( P Q ) ∂ Q = P T ∂ t r ( Q P ) ∂ Q = P T ∂ t r ( P Q T ) ∂ Q = P ∂ t r ( Q T P ) ∂ Q = P \frac{\partial {\rm tr} \left( \mathbf{P} \mathbf{Q} \mathbf{P}^{\rm T} \right)}{\partial \mathbf{P}} = \mathbf{P} \left( \mathbf{Q} + \mathbf{Q}^{\rm T} \right) \\ \frac{\partial {\rm tr} \left( \mathbf{P} \mathbf{Q} \right)}{\partial \mathbf{Q}} = \mathbf{P}^{\rm T} \\ \frac{\partial {\rm tr} \left( \mathbf{Q} \mathbf{P} \right)}{\partial \mathbf{Q}} = \mathbf{P}^{\rm T} \\ \frac{\partial {\rm tr} \left( \mathbf{P} \mathbf{Q}^{\rm T} \right)}{\partial \mathbf{Q}} = \mathbf{P} \\ \frac{\partial {\rm tr} \left( \mathbf{Q}^{\rm T} \mathbf{P} \right)}{\partial \mathbf{Q}} = \mathbf{P} Ptr(PQPT)=P(Q+QT)Qtr(PQ)=PTQtr(QP)=PTQtr(PQT)=PQtr(QTP)=P参照式(14)右边的各项,先得出如下项的迹的导数:
∂ t r ( A − K ϕ C ) ∂ K ϕ = ∂ t r ( A ) ∂ K ϕ − ∂ t r ( K ϕ C ) ∂ K ϕ = 0 − C T = − C T ∂ t r ( K ϕ S 2 K ϕ T ) ∂ K ϕ = K ϕ ( S 2 + S 2 T ) = 2 K ϕ S 2 ∂ t r ( G ( t ) S 3 K ϕ T ) ∂ K ϕ = G ( t ) S 3 ∂ t r ( K ϕ S 3 G T ) ∂ K ϕ = [ S 3 G T ] T = G ( t ) S 3 \frac{\partial {\rm tr} \left( \mathbf{A} - \mathbf{K}_\phi \mathbf{C} \right)}{\partial \mathbf{K}_\phi} = \frac{\partial {\rm tr} \left( \mathbf{A} \right)}{\partial \mathbf{K}_\phi} - \frac{\partial {\rm tr} \left( \mathbf{K}_\phi \mathbf{C} \right)}{\partial \mathbf{K}_\phi} = 0 - \mathbf{C}^{\rm T} = - \mathbf{C}^{\rm T} \\ \frac{\partial {\rm tr} \left( \mathbf{K}_\phi \mathbf{S}_2 \mathbf{K}_\phi^{\rm T} \right)}{\partial \mathbf{K}_\phi} = \mathbf{K}_\phi \left( \mathbf{S}_2 + \mathbf{S}_2^{\rm T} \right) = 2 \mathbf{K}_\phi \mathbf{S}_2 \\ \frac{\partial {\rm tr} \left( \mathbf{G}(t) \mathbf{S}_3 \mathbf{K}_\phi^{\rm T} \right)}{\partial \mathbf{K}_\phi} = \mathbf{G}(t) \mathbf{S}_3 \\ \frac{\partial {\rm tr} \left( \mathbf{K}_\phi \mathbf{S}_3 \mathbf{G}^{\rm T} \right)}{\partial \mathbf{K}_\phi} = \left[ \mathbf{S}_3 \mathbf{G}^{\rm T} \right]^{\rm T} = \mathbf{G}(t) \mathbf{S}_3 Kϕtr(AKϕC)=Kϕtr(A)Kϕtr(KϕC)=0CT=CTKϕtr(KϕS2KϕT)=Kϕ(S2+S2T)=2KϕS2Kϕtr(G(t)S3KϕT)=G(t)S3Kϕtr(KϕS3GT)=[S3GT]T=G(t)S3把如上式子全部代入微分方程(15),可以求解得
K ϕ ∗ ( t ) = [ D σ σ ( t ) C T ( t ) + G ( t ) S 3 ( t ) ] S 2 − 1 ( t ) (16 – 1) \mathbf{K}_\phi^* (t) = \left[ \mathbf{D}_{\sigma \sigma}(t) \mathbf{C}^{\rm T}(t) + \mathbf{G}(t) \mathbf{S}_3(t) \right] \mathbf{S}_2^{-1}(t) \tag{16 -- 1} Kϕ(t)=[Dσσ(t)CT(t)+G(t)S3(t)]S21(t)(16 – 1)

(6) 两个噪声之间的特殊情况

以上所有推导都是建立在第2节第(2)点上的: N 1 ( t ) \mathbf{N}_1(t) N1(t) N 2 ( t ) \mathbf{N}_2(t) N2(t)相关,即 M { N 1 ( t ) N 2 T ( τ ) } = S 3 ( t ) δ ( t − τ ) M\left\{ \mathbf{N}_1(t) \mathbf{N}_2^{\rm T}(\tau) \right\} = \mathbf{S}_3 (t) \delta (t - \tau) M{ N1(t)N2T(τ)}=S3(t)δ(tτ)。然而,这两个噪声一个是系统噪声,一个是测量噪声,在实际中往往是不相关的。

当二者不相关时, M { N 1 ( t ) N 2 T ( τ ) } = 0 M\left\{ \mathbf{N}_1(t) \mathbf{N}_2^{\rm T}(\tau) \right\} = 0 M{ N1(t)N2T(τ)}=0,即 S 3 ( t ) = 0 \mathbf{S}_3 (t) = 0 S3(t)=0。在这种特殊情况下,式(16 – 1)具有较为理想的特殊形式
K ϕ ∗ ( t ) = D σ σ ( t ) C T ( t ) S 2 − 1 ( t ) (16 – 2) \mathbf{K}_\phi^* (t) = \mathbf{D}_{\sigma \sigma}(t) \mathbf{C}^{\rm T}(t) \mathbf{S}_2^{-1}(t) \tag{16 -- 2} Kϕ(t)=Dσσ(t)CT(t)S21(t)(16 – 2)式(16 – 1)和(16 – 2)即为所求得的最优Kalman-Bucy滤波器表达式

最后,将式(16 – 1)反代回式(14),以求得不显含 K ϕ ∗ ( t ) \mathbf{K}_\phi^*(t) Kϕ(t)的误差方差 D σ σ ( t ) \mathbf{D}_{\sigma \sigma}(t) Dσσ(t)满足的微分方程:
D ˙ σ σ ( t ) = [ A − K ϕ ∗ C ] D σ σ + D σ σ [ A − K ϕ ∗ C ] T + [ G S 1 G T − G S 3 K ϕ ∗ T − K ϕ ∗ S 3 G T + K ϕ ∗ S 2 K ϕ ∗ T ] = { A − [ D σ σ C T + G S 3 ] S 2 − 1 ⋅ C } D σ σ + D σ σ { A − [ D σ σ C T + G S 3 ] S 2 − 1 ⋅ C } T + + G S 1 G T − G S 3 { [ D σ σ C T + G S 3 ] S 2 − 1 } T − [ D σ σ C T + G S 3 ] S 2 − 1 ⋅ S 3 G T + [ D σ σ C T + G S 3 ] S 2 − 1 ⋅ S 2 ⋅ K ϕ ∗ T { [ D σ σ C T + G S 3 ] S 2 − 1 } T = ( A − G S 3 S 2 − 1 C ) D σ σ + D σ σ ( A − G S 3 S 2 − 1 C ) T − D σ σ C T S 2 − 1 C D σ σ + G ( S 1 − S 3 S 2 − 1 S 3 ) G T (17 – 1) \begin{aligned} \dot{ \mathbf{D} }_{\sigma \sigma}(t) &= \left[ \mathbf{A} - \mathbf{K}_\phi^* \mathbf{C} \right] \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \left[ \mathbf{A} - \mathbf{K}_\phi^* \mathbf{C} \right]^{\rm T} + \left[ \mathbf{G} \mathbf{S}_1 \mathbf{G}^{\rm T} - \mathbf{G} \mathbf{S}_3 \mathbf{K}_\phi^{* \rm T} - \mathbf{K}_\phi^* \mathbf{S}_3 \mathbf{G}^{\rm T} + \mathbf{K}_\phi^* \mathbf{S}_2 \mathbf{K}_\phi^{* \rm T} \right] \\ &= \left\{ \mathbf{A} - \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \cdot \mathbf{C} \right\} \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \left\{ \mathbf{A} - \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \cdot \mathbf{C} \right\}^{\rm T} + \\ &+ \mathbf{G} \mathbf{S}_1 \mathbf{G}^{\rm T} - \mathbf{G} \mathbf{S}_3 \left\{ \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \right\}^{\rm T} - \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \cdot \mathbf{S}_3 \mathbf{G}^{\rm T} \\ &+ \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \cdot \mathbf{S}_2 \cdot \mathbf{K}_\phi^{* \rm T} \left\{ \left[ \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} + \mathbf{G} \mathbf{S}_3 \right] \mathbf{S}_2^{-1} \right\}^{\rm T} \\ &= \left( \mathbf{A} - \mathbf{G} \mathbf{S}_3 \mathbf{S}_2^{-1} \mathbf{C} \right) \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \left( \mathbf{A} - \mathbf{G} \mathbf{S}_3 \mathbf{S}_2^{-1} \mathbf{C} \right)^{\rm T} - \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} \mathbf{S}_2^{-1} \mathbf{C} \mathbf{D}_{\sigma \sigma} + \mathbf{G} \left( \mathbf{S}_1 - \mathbf{S}_3 \mathbf{S}_2^{-1} \mathbf{S}_3 \right) \mathbf{G}^{\rm T} \end{aligned} \tag{17 -- 1} D˙σσ(t)=[AKϕC]Dσσ+Dσσ[AKϕC]T+[GS1GTGS3KϕTKϕS3GT+KϕS2KϕT]={ A[DσσCT+GS3]S21C}Dσσ+Dσσ{ A[DσσCT+GS3]S21C}T++GS1GTGS3{ [DσσCT+GS3]S21}T[DσσCT+GS3]S21S3GT+[DσσCT+GS3]S21S2KϕT{ [DσσCT+GS3]S21}T=(AGS3S21C)Dσσ+Dσσ(AGS3S21C)TDσσCTS21CDσσ+G(S1S3S21S3)GT(17 – 1) N 1 ( t ) \mathbf{N}_1(t) N1(t) N 2 ( t ) \mathbf{N}_2(t) N2(t)不相关时 S 3 ( t ) = 0 \mathbf{S}_3(t)=0 S3(t)=0,上式变为
D ˙ σ σ ( t ) = A D σ σ + D σ σ A T − D σ σ C T S 2 − 1 C D σ σ + G S 1 G T (17 – 2) \dot{ \mathbf{D} }_{\sigma \sigma}(t) = \mathbf{A} \mathbf{D}_{\sigma \sigma} + \mathbf{D}_{\sigma \sigma} \mathbf{A}^{\rm T} - \mathbf{D}_{\sigma \sigma} \mathbf{C}^{\rm T} \mathbf{S}_2^{-1} \mathbf{C} \mathbf{D}_{\sigma \sigma} + \mathbf{G} \mathbf{S}_1\mathbf{G}^{\rm T} \tag{17 -- 2} D˙σσ(t)=ADσσ+DσσATDσσCTS21CDσσ+GS1GT(17 – 2)至此,式(17 – 1)和(17 – 2)给出了不含 K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)的估计误差方差 D σ σ ( t ) \mathbf{D}_{\sigma \sigma}(t) Dσσ(t)表达式。

(7) 滤波器的结论

式(16)给出了最优Kalman-Bucy滤波器的表达式 K ϕ ∗ ( t ) \mathbf{K}_\phi^* (t) Kϕ(t)

a) Kalman-Bucy滤波器具有式(9)的形式,它利用测量值 Y ( t ) \mathbf{Y}(t) Y(t)可以求出状态量 X ( t ) \mathbf{X}(t) X(t)的真值。
b) 由式(9)可以看出,在这个过程中需要用到状态矩阵 A ( t ) \mathbf{A}(t) A(t)和测量矩阵 C ( t ) \mathbf{C}(t) C(t),二者可以在参数估计或参数识别的前提下获得。
c) 利用式(17),可以直接基于状态矩阵 A ( t ) \mathbf{A}(t) A(t)、测量矩阵 C ( t ) \mathbf{C}(t) C(t)与两个噪声的方差分布矩阵 S i ( t ) \mathbf{S}_i(t) Si(t)计算出估计误差 D σ σ \mathbf{D}_{\sigma \sigma} Dσσ,而绕开 K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t)的计算。
d) 在计算出 D σ σ \mathbf{D}_{\sigma \sigma} Dσσ之后,代入式(16),就能计算出 K ϕ ( t ) \mathbf{K}_\phi(t) Kϕ(t),进而得出Kalman-Bucy滤波器的结构如式(9)。
e) 式(9)计算得出的状态估计值 X ^ ( t ) \hat{ \mathbf{X} }(t) X^(t)可以满足无偏估计,并使得估计误差的均方差最小。
f) 不可忽视的条件:以上所有都建立在2大基础上:一是对系统的状态矩阵 A ( t ) \mathbf{A}(t) A(t)和测量矩阵 C ( t ) \mathbf{C}(t) C(t)的估计足够准确,这对参数辨识提出了较高要求;二是估计值 X ^ ( t ) \hat{ \mathbf{X} }(t) X^(t)的初值需要估计准确,即结果受初值影响较大。
g) 利用Kalman-Bucy滤波器对状态进行滤波的步骤:参数辨识得出系统模型 A ( t ) , C ( t ) \mathbf{A}(t),\mathbf{C}(t) A(t),C(t) —— 根据式(17)计算得到误差方差 D σ σ \mathbf{D}_{\sigma \sigma} Dσσ —— 将 D σ σ \mathbf{D}_{\sigma \sigma} Dσσ代入式(16)计算得到滤波器的最优系数矩阵 K ϕ ∗ ( t ) \mathbf{K}_\phi^*(t) Kϕ(t),该矩阵可以满足状态估计值的无偏和误差均方差最小 —— 利用式(9)构建Kalman-Bucy滤波器,并求解得出状态估计值 X ^ ( t ) \hat{ \mathbf{X} }(t) X^(t)

猜你喜欢

转载自blog.csdn.net/weixin_58399148/article/details/131860905