初识机器学习_20201114

一. 机器学习基础

​ 机器学习起源于上世纪50年代,1959年在IBM工作的Arthur Samuel设计了一个下棋程序,这个程序具有学习的能力,它可以在不断的对弈中提高自己。由此提出了“机器学习”这个概念,它是一个结合了多个学科如概率论,优化理论,统计等,最终在计算机上实现自我获取新知识,学习改善自己的这样一个研究领域。机器学习是人工智能的一个子集,目前已经发展出许多有用的方法,比如支持向量机,回归,决策树,随机森林,强化方法,集成学习,深度学习等等,一定程度上可以帮助人们完成一些数据预测,自动化,自动决策,最优化等初步替代脑力的任务。机器学习的基本概念、监督学习、分类算法、逻辑回归、代价函数、损失函数、LDA、PCA、决策树、支持向量机、EM算法、聚类和降维以及模型评估有哪些方法、指标等等。

1.1 基本概念

1.1.1 大话理解机器学习本质

​ 机器学习(Machine Learning, ML),顾名思义,让机器去学习。这里,机器指的是计算机,是算法运行的物理载体,你也可以把各种算法本身当做一个有输入和输出的机器。那么到底让计算机去学习什么呢?对于一个任务及其表现的度量方法,设计一种算法,让算法能够提取中数据所蕴含的规律,这就叫机器学习。如果输入机器的数据是带有标签的,就称作有监督学习。如果数据是无标签的,就是无监督学习。

1.1.2 各种常见算法图示

​ 日常使用机器学习的任务中,我们经常会遇见各种算法,图2-2是各种常见算法的图示。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

​ 图2-2 各种常见算法图示

1.1.3 大数据与深度学习之间的关系

首先来看大数据、机器学习及数据挖掘三者简单的定义:

大数据通常被定义为“超出常用软件工具捕获,管理和处理能力”的数据集。
机器学习关心的问题是如何构建计算机程序使用经验自动改进。
数据挖掘是从数据中提取模式的特定算法的应用,在数据挖掘中,重点在于算法的应用,而不是算法本身。

机器学习和数据挖掘之间的关系如下:
数据挖掘是一个过程,在此过程中机器学习算法被用作提取数据集中的潜在有价值模式的工具。
大数据与深度学习关系总结如下:

(1)深度学习是一种模拟大脑的行为。可以从所学习对象的机制以及行为等等很多相关联的方面进行学习,模仿类型行为以及思维。

(2)深度学习对于大数据的发展有帮助。深度学习对于大数据技术开发的每一个阶段均有帮助,不管是数据的分析还是挖掘还是建模,只有深度学习,这些工作才会有可能一一得到实现。

(3)深度学习转变了解决问题的思维。很多时候发现问题到解决问题,走一步看一步不是一个主要的解决问题的方式了,在深度学习的基础上,要求我们从开始到最后都要基于一个目标,为了需要优化的那个最终目标去进行处理数据以及将数据放入到数据应用平台上去,这就是端到端(End to End)。

(4)大数据的深度学习需要一个框架。在大数据方面的深度学习都是从基础的角度出发的,深度学习需要一个框架或者一个系统。总而言之,将你的大数据通过深度分析变为现实,这就是深度学习和大数据的最直接关系。

1.2 机器学习学习方式

​ 根据数据类型的不同,对一个问题的建模有不同的方式。依据不同的学习方式和输入数据,机器学习主要分为以下四种学习方式。

1.2.1 监督学习

​ 特点:监督学习是使用已知正确答案的示例来训练网络。已知数据和其一一对应的标签,训练一个预测模型,将输入数据映射到标签的过程。

​ 常见应用场景:监督式学习的常见应用场景如分类问题和回归问题。

​ 算法举例:常见的有监督机器学习算法包括支持向量机(Support Vector Machine, SVM),朴素贝叶斯(Naive Bayes),逻辑回归(Logistic Regression),K近邻(K-Nearest Neighborhood, KNN),决策树(Decision Tree),随机森林(Random Forest),AdaBoost以及线性判别分析(Linear Discriminant Analysis, LDA)等。深度学习(Deep Learning)也是大多数以监督学习的方式呈现。

1.2.2 非监督式学习

​ 定义:在非监督式学习中,数据并不被特别标识,适用于你具有数据集但无标签的情况。学习模型是为了推断出数据的一些内在结构。

​ 常见应用场景:常见的应用场景包括关联规则的学习以及聚类等。

​ 算法举例:常见算法包括Apriori算法以及k-Means算法。

1.2.3 半监督式学习

​ 特点:在此学习方式下,输入数据部分被标记,部分没有被标记,这种学习模型可以用来进行预测。

​ 常见应用场景:应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,通过对已标记数据建模,在此基础上,对未标记数据进行预测。

​ 算法举例:常见算法如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM)等。

1.2.4 弱监督学习

​ 特点:弱监督学习可以看做是有多个标记的数据集合,次集合可以是空集,单个元素,或包含多种情况(没有标记,有一个标记,和有多个标记)的多个元素。 数据集的标签是不可靠的,这里的不可靠可以是标记不正确,多种标记,标记不充分,局部标记等。已知数据和其一一对应的弱标签,训练一个智能算法,将输入数据映射到一组更强的标签的过程。标签的强弱指的是标签蕴含的信息量的多少,比如相对于分割的标签来说,分类的标签就是弱标签。

​ 算法举例:举例,给出一张包含气球的图片,需要得出气球在图片中的位置及气球和背景的分割线,这就是已知弱标签学习强标签的问题。

​ 在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。

1.2.5 监督学习有哪些步骤

​ 监督学习是使用已知正确答案的示例来训练网络,每组训练数据有一个明确的标识或结果。想象一下,我们可以训练一个网络,让其从照片库中(其中包含气球的照片)识别出气球的照片。以下就是我们在这个假设场景中所要采取的步骤。

步骤1:数据集的创建和分类
​ 首先,浏览你的照片(数据集),确定所有包含气球的照片,并对其进行标注。然后,将所有照片分为训练集和验证集。目标就是在深度网络中找一函数,这个函数输入是任意一张照片,当照片中包含气球时,输出1,否则输出0。

步骤2:数据增强(Data Augmentation)
​ 当原始数据搜集和标注完毕,一般搜集的数据并不一定包含目标在各种扰动下的信息。数据的好坏对于机器学习模型的预测能力至关重要,因此一般会进行数据增强。对于图像数据来说,数据增强一般包括,图像旋转,平移,颜色变换,裁剪,仿射变换等。

步骤3:特征工程(Feature Engineering)
​ 一般来讲,特征工程包含特征提取和特征选择。常见的手工特征(Hand-Crafted Feature)有尺度不变特征变换(Scale-Invariant Feature Transform, SIFT),方向梯度直方图(Histogram of Oriented Gradient, HOG)等。由于手工特征是启发式的,其算法设计背后的出发点不同,将这些特征组合在一起的时候有可能会产生冲突,如何将组合特征的效能发挥出来,使原始数据在特征空间中的判别性最大化,就需要用到特征选择的方法。在深度学习方法大获成功之后,人们很大一部分不再关注特征工程本身。因为,最常用到的卷积神经网络(Convolutional Neural Networks, CNNs)本身就是一种特征提取和选择的引擎。研究者提出的不同的网络结构、正则化、归一化方法实际上就是深度学习背景下的特征工程。

步骤4:构建预测模型和损失
​ 将原始数据映射到特征空间之后,也就意味着我们得到了比较合理的输入。下一步就是构建合适的预测模型得到对应输入的输出。而如何保证模型的输出和输入标签的一致性,就需要构建模型预测和标签之间的损失函数,常见的损失函数(Loss Function)有交叉熵、均方差等。通过优化方法不断迭代,使模型从最初的初始化状态一步步变化为有预测能力的模型的过程,实际上就是学习的过程。

步骤5:训练
​ 选择合适的模型和超参数进行初始化,其中超参数比如支持向量机中核函数、误差项惩罚权重等。当模型初始化参数设定好后,将制作好的特征数据输入到模型,通过合适的优化方法不断缩小输出与标签之间的差距,当迭代过程到了截止条件,就可以得到训练好的模型。优化方法最常见的就是梯度下降法及其变种,使用梯度下降法的前提是优化目标函数对于模型是可导的。

步骤6:验证和模型选择
​ 训练完训练集图片后,需要进行模型测试。利用验证集来验证模型是否可以准确地挑选出含有气球在内的照片。
​ 在此过程中,通常会通过调整和模型相关的各种事物(超参数)来重复步骤2和3,诸如里面有多少个节点,有多少层,使用怎样的激活函数和损失函数,如何在反向传播阶段积极有效地训练权值等等。

步骤7:测试及应用
​ 当有了一个准确的模型,就可以将该模型部署到你的应用程序中。你可以将预测功能发布为API(Application Programming Interface, 应用程序编程接口)调用,并且你可以从软件中调用该API,从而进行推理并给出相应的结果。

1.3 分类算法

​ 分类算法和回归算法是对真实世界不同建模的方法。分类模型是认为模型的输出是离散的,例如大自然的生物被划分为不同的种类,是离散的。回归模型的输出是连续的,例如人的身高变化过程是一个连续过程,而不是离散的。

​ 因此,在实际建模过程时,采用分类模型还是回归模型,取决于你对任务(真实世界)的分析和理解。

1.3.1 常用分类算法的优缺点?

​ 常用分类算法的优缺点,如表2-1所示。

​ 表2-1 常用分类算法的优缺点

算法 优点 缺点
Bayes 贝叶斯分类法 1)所需估计的参数少,对于缺失数据不敏感。
2)有着坚实的数学基础,以及稳定的分类效率。
1)需要假设属性之间相互独立,这往往并不成立。(喜欢吃番茄、鸡蛋,却不喜欢吃番茄炒蛋)。
2)需要知道先验概率。
3)分类决策存在错误率。
Decision Tree决策树 1)不需要任何领域知识或参数假设。
2)适合高维数据。
3)简单易于理解。
4)短时间内处理大量数据,得到可行且效果较好的结果。
5)能够同时处理数据型和常规性属性。
1)对于各类别样本数量不一致数据,信息增益偏向于那些具有更多数值的特征。
2)易于过拟合。
3)忽略属性之间的相关性。
4)不支持在线学习。
SVM支持向量机 1)可以解决小样本下机器学习的问题。
2)提高泛化性能。
3)可以解决高维、非线性问题。超高维文本分类仍受欢迎。
4)避免神经网络结构选择和局部极小的问题。
1)对缺失数据敏感。
2)内存消耗大,难以解释。
3)运行和调参略烦人。
KNN K近邻 1)思想简单,理论成熟,既可以用来做分类也可以用来做回归;
2)可用于非线性分类;
3)训练时间复杂度为O(n);
4)准确度高,对数据没有假设,对outlier不敏感;
1)计算量太大。
2)对于样本分类不均衡的问题,会产生误判。
3)需要大量的内存。
4)输出的可解释性不强。
Logistic Regression逻辑回归 1)速度快。
2)简单易于理解,直接看到各个特征的权重。
3)能容易地更新模型吸收新的数据。
4)如果想要一个概率框架,动态调整分类阀值。
特征处理复杂。需要归一化和较多的特征工程。
Neural Network 神经网络 1)分类准确率高。
2)并行处理能力强。
3)分布式存储和学习能力强。
4)鲁棒性较强,不易受噪声影响。
1)需要大量参数(网络拓扑、阀值、阈值)。
2)结果难以解释。
3)训练时间过长。
Adaboosting 1)adaboost是一种有很高精度的分类器。
2)可以使用各种方法构建子分类器,Adaboost算法提供的是框架。
3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单。
4)简单,不用做特征筛选。
5)不用担心overfitting。
对outlier比较敏感

猜你喜欢

转载自blog.csdn.net/a18829292719/article/details/109688199
今日推荐