A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index
, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
代码:
#include <iostream> #include <bits/stdc++.h> using namespace std; struct TreeNode{ int data; int left,right; }t[101]; int a[101]; int b[101]; int n; int flag=0,k=0; void inOrder(int x){ if(t[x].left!=-1){ inOrder(t[x].left); } t[x].data = a[flag++]; if(t[x].right!=-1){ inOrder(t[x].right); } } int main() { cin>>n; for(int i=0;i<n;i++){ cin>>t[i].left>>t[i].right; } for(int i=0;i<n;i++){ cin>>a[i]; } sort(a,a+n); inOrder(0); TreeNode tmp; queue<TreeNode> q; q.push(t[0]); while(!q.empty()){ tmp = q.front(); b[k++] = tmp.data; q.pop(); if(tmp.left!=-1){ q.push(t[tmp.left]); } if(tmp.right!=-1){ q.push(t[tmp.right]); } } for(int i=0; i<n; i++) { if(i==0){ cout<<b[i]; }else{ cout<<" "<<b[i]; } } cout<<endl; return 0; }
分析:
建树过程可以参照PAT--1064,刚开始不明白为什么该方法中需要在用层次遍历一遍,而1064直接建好的树就可以直接输出。好像是因为结点的左右孩子是指定的原因,在完全搜索树中,孩子就是其2*i和2*i+1,但是在此题中,孩子由输入指定。建树是定好了左右孩子,然后向结点中填充数据。(分析有点乱,因为我自己也不是特别清楚)