OpenCV每日函数 图像过滤模块 (17) pyrMeanShiftFiltering函数

一、概述

        执行图像均值偏移分割的初始步骤。该函数实现了meanshift分割的滤波阶段,即该函数的输出是经过滤波的“posterized”图像,具有颜色渐变和细粒度纹理展平。 在输入图像(或缩小的输入图像,见下文)的每个像素 (X,Y) 处,该函数执行 meanshift 迭代,即考虑联合空间-颜色超空间中的像素 (X,Y) 邻域:

        其中 (R,G,B) 和 (r,g,b) 分别是 (X,Y) 和 (x,y) 处颜色分量的向量(尽管该算法不依赖于所使用的颜色空间, 因此可以使用任何 3 分量颜色空间代替)。 在邻域上,找到平均空间值 (X',Y') 和平均颜色向量 (R',G',B'),它们在下一次迭代中充当邻域中心:

        迭代结束后,初始像素(即迭代开始的像素)的颜色分量被设置为最终值(最后一次迭代的平均颜色):

        当maxLevel > 0时,构建maxLevel+1层的高斯金字塔,上面的过程首先在最小的层上运行。 之后,将结果传播到较大的层,并且仅在层颜色与金字塔的较低分辨率层的差异超过 sr 的像素上再次运行迭代。 这使得颜色区域的边界更加清晰。 请注意,结果实际上与通过在整个原始图像上运行 meanshift 过程获得的结果不同(即当 maxLevel==0 时)。

二、pyrMeanShiftFiltering函数

1、函数原型

cv::pyrMeanShiftFiltering (InputArray src, OutputArray dst, double sp, double sr, int maxLevel=1, TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 5, 1))

2、参数详解

src 源 8 位、3 通道图像。
dst 与源图像格式和大小相同的目标图像。
sp 空间窗口半径。
sr 颜色窗口半径。
maxLevel 用于分割的金字塔的最大级别。
termcrit 终止标准:何时停止 meanshift 迭代。

三、OpenCV源码

1、源码路径

opencv\modules\imgproc\src\segmentation.cpp

2、源码代码

void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
                                double sp0, double sr, int max_level,
                                TermCriteria termcrit )
{
    CV_INSTRUMENT_REGION();

    Mat src0 = _src.getMat();

    if( src0.empty() )
        return;

    _dst.create( src0.size(), src0.type() );
    Mat dst0 = _dst.getMat();

    const int cn = 3;
    const int MAX_LEVELS = 8;

    if( (unsigned)max_level > (unsigned)MAX_LEVELS )
        CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );

    std::vector<cv::Mat> src_pyramid(max_level+1);
    std::vector<cv::Mat> dst_pyramid(max_level+1);
    cv::Mat mask0;
    int i, j, level;
    //uchar* submask = 0;

    #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
        tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)

    double sr2 = sr * sr;
    int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
    int tab[768];


    if( src0.type() != CV_8UC3 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );

    if( src0.type() != dst0.type() )
        CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );

    if( src0.size() != dst0.size() )
        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );

    if( !(termcrit.type & CV_TERMCRIT_ITER) )
        termcrit.maxCount = 5;
    termcrit.maxCount = MAX(termcrit.maxCount,1);
    termcrit.maxCount = MIN(termcrit.maxCount,100);
    if( !(termcrit.type & CV_TERMCRIT_EPS) )
        termcrit.epsilon = 1.f;
    termcrit.epsilon = MAX(termcrit.epsilon, 0.f);

    for( i = 0; i < 768; i++ )
        tab[i] = (i - 255)*(i - 255);

    // 1. construct pyramid
    src_pyramid[0] = src0;
    dst_pyramid[0] = dst0;
    for( level = 1; level <= max_level; level++ )
    {
        src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
                        (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
        dst_pyramid[level].create( src_pyramid[level].rows,
                        src_pyramid[level].cols, src_pyramid[level].type() );
        cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
        //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
    }

    mask0.create(src0.rows, src0.cols, CV_8UC1);
    //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));

    // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
    for( level = max_level; level >= 0; level-- )
    {
        cv::Mat src = src_pyramid[level];
        cv::Size size = src.size();
        const uchar* sptr = src.ptr();
        int sstep = (int)src.step;
        uchar* dptr;
        int dstep;
        float sp = (float)(sp0 / (1 << level));
        sp = MAX( sp, 1 );

        cv::Mat m;
        if( level < max_level )
        {
            cv::Size size1 = dst_pyramid[level+1].size();
            m = cv::Mat(size.height, size.width, CV_8UC1, mask0.ptr());
            dstep = (int)dst_pyramid[level+1].step;
            dptr = dst_pyramid[level+1].ptr() + dstep + cn;
            //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
            cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
            m.setTo(cv::Scalar::all(0));

            for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3)
            {
                uchar* mask = m.ptr(1 + i * 2);
                for( j = 1; j < size1.width-1; j++, dptr += cn )
                {
                    int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
                    mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
                        cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
                }
            }

            cv::dilate( m, m, cv::Mat() );
        }

        dptr = dst_pyramid[level].ptr();
        dstep = (int)dst_pyramid[level].step;

        for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
                                          dptr += dstep - size.width*3
        )
        {
            uchar* mask = m.empty() ? NULL : m.ptr(i);
            for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
            {
                int x0 = j, y0 = i, x1, y1, iter;
                int c0, c1, c2;

                if( mask && !mask[j] )
                    continue;

                c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];

                // iterate meanshift procedure
                for( iter = 0; iter < termcrit.maxCount; iter++ )
                {
                    const uchar* ptr;
                    int x, y, count = 0;
                    int minx, miny, maxx, maxy;
                    int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
                    double icount;
                    int stop_flag;

                    //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
                    minx = cvRound(x0 - sp); minx = MAX(minx, 0);
                    miny = cvRound(y0 - sp); miny = MAX(miny, 0);
                    maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
                    maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
                    ptr = sptr + (miny - i)*sstep + (minx - j)*3;

                    for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
                    {
                        int row_count = 0;
                        x = minx;
                        #if CV_ENABLE_UNROLLED
                        for( ; x + 3 <= maxx; x += 4, ptr += 12 )
                        {
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                            t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+1; row_count++;
                            }
                            t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+2; row_count++;
                            }
                            t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x+3; row_count++;
                            }
                        }
                        #endif
                        for( ; x <= maxx; x++, ptr += 3 )
                        {
                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
                            {
                                s0 += t0; s1 += t1; s2 += t2;
                                sx += x; row_count++;
                            }
                        }
                        count += row_count;
                        sy += y*row_count;
                    }

                    if( count == 0 )
                        break;

                    icount = 1./count;
                    x1 = cvRound(sx*icount);
                    y1 = cvRound(sy*icount);
                    s0 = cvRound(s0*icount);
                    s1 = cvRound(s1*icount);
                    s2 = cvRound(s2*icount);

                    stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
                        tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
                        tab[s2 - c2 + 255] <= termcrit.epsilon;

                    x0 = x1; y0 = y1;
                    c0 = s0; c1 = s1; c2 = s2;

                    if( stop_flag )
                        break;
                }

                dptr[0] = (uchar)c0;
                dptr[1] = (uchar)c1;
                dptr[2] = (uchar)c2;
            }
        }
    }
}

四、效果图像示例

原图

        如果sp和sr值较小,将看不出来什么效果。 

效果图

猜你喜欢

转载自blog.csdn.net/bashendixie5/article/details/125256208