问题描述:继续更新功能
实现代码
输入的是被提取边界的点云
void border(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud){
std::cout << "points sieze is:" << cloud->size() << std::endl;
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Boundary> boundaries;
pcl::BoundaryEstimation<pcl::PointXYZ, pcl::Normal, pcl::Boundary> est;
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身
kdtree.setInputCloud(cloud);
int k =2;
float everagedistance =0;
for (int i =0; i < cloud->size()/2;i++)
{
vector<int> nnh ;
vector<float> squaredistance;
// pcl::PointXYZ p;
// p = cloud->points[i];
kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance);
everagedistance += sqrt(squaredistance[1]);
// cout<<everagedistance<<endl;
}
everagedistance = everagedistance/(cloud->size()/2);
cout<<"everage distance is : "<<everagedistance<<endl;
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normEst; //其中pcl::PointXYZ表示输入类型数据,pcl::Normal表示输出类型,且pcl::Normal前三项是法向,最后一项是曲率
normEst.setInputCloud(cloud);
normEst.setSearchMethod(tree);
// normEst.setRadiusSearch(2); //法向估计的半径
normEst.setKSearch(9); //法向估计的点数
normEst.compute(*normals);
cout << "normal size is " << normals->size() << endl;
//normal_est.setViewPoint(0,0,0); //这个应该会使法向一致
est.setInputCloud(cloud);
est.setInputNormals(normals);
// est.setAngleThreshold(90);
// est.setSearchMethod (pcl::search::KdTree<pcl::PointXYZ>::Ptr (new pcl::search::KdTree<pcl::PointXYZ>));
est.setSearchMethod(tree);
est.setKSearch(50); //一般这里的数值越高,最终边界识别的精度越好
// est.setRadiusSearch(everagedistance); //搜索半径
est.compute(boundaries);
// pcl::PointCloud<pcl::PointXYZ> boundPoints;
pcl::PointCloud<pcl::PointXYZ>::Ptr boundPoints(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ> noBoundPoints;
int countBoundaries = 0;
for (int i = 0; i < cloud->size(); i++) {
uint8_t x = (boundaries.points[i].boundary_point);
int a = static_cast<int>(x); //该函数的功能是强制类型转换
if (a == 1)
{
// boundPoints.push_back(cloud->points[i]);
(*boundPoints).push_back(cloud->points[i]);
countBoundaries++;
}
else
noBoundPoints.push_back(cloud->points[i]);
}
std::cout << "boudary size is:" << countBoundaries << std::endl;
// pcl::io::savePCDFileASCII("boudary.pcd",boundPoints);
pcl::io::savePLYFileASCII("/home/wxw/桌面/Boundpoints.ply", *boundPoints);
// pcl::io::savePLYFileASCII("C:\\Users\\fhlhc\\Desktop\\NoBoundpoints.ply", noBoundPoints);
//双视口
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("test Viewer"));
viewer->initCameraParameters();
int v1(0), v2(0);
//原始点云窗口
viewer->createViewPort(0.0, 0.0, 0.5, 1.0, v1);
viewer->setBackgroundColor(0, 0, 0, v1);
viewer->addText("original", 10, 10, "v1 text", v1);
viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud1", v1);
viewer->addCoordinateSystem(1.0);
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "sample cloud1");
//滤波窗口
viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);
viewer->setBackgroundColor(0, 0, 0, v2);
viewer->addText("提取边界", 10, 10, "v2 text", v2);
viewer->addPointCloud<pcl::PointXYZ>(boundPoints, "sample cloud2", v2);
viewer->addCoordinateSystem(1.0);
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "sample cloud2");
while (!viewer->wasStopped())
{
viewer->spinOnce(100); //刷新
std::this_thread::sleep_for(100ms); }
}