PCL 3D-SIFT关键点检测(曲率不变特征约束

PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        3D-SIFT(Scale-Invariant Feature Transform)关键点检测是用于点云分析的一种有效方法,具有尺度不变性和旋转不变性在处理复杂场景和物体识别时,通过对点云的多尺度空间构建和局部特征的提取,可以提取稳定的特征点。本示例结合了曲率不变的特性,通过对点云的法向量进行计算,提取出更具几何稳定性的SIFT关键点。

1.1原理

        SIFT算法的核心思想是通过尺度空间中的特征检测来找到图像中的稳定特征点。三维SIFT通过计算点云的法向量和曲率来替代二维图像的灰度值,并在不同的尺度下提取稳定的特征点。</

猜你喜欢

转载自blog.csdn.net/qq_47947920/article/details/142782476
pcl
今日推荐