yolov11-seg数据集制作训练推理流程:


前言

随着深度学习技术的不断发展,目标检测与分割技术在计算机视觉领域扮演着越来越重要的角色。YOLO(You Only Look Once)作为一种高效、实时的目标检测算法,自提出以来就受到了广泛关注。YOLOv11-seg作为YOLO系列算法的最新成员,不仅继承了YOLO系列的高效性,还引入了分割功能,使得该算法在目标检测与分割任务中具有更广泛的应用前景。
本文将详细介绍YOLOv11-seg数据集的制作、训练和推理流程,旨在为相关领域的科研人员、工程师和爱好者提供一个完整的实践指南。通过本文的介绍,读者可以了解如何从原始数据出发,经过数据预处理、标注、模型训练和推理等步骤,最终得到一个高效的目标检测与分割模型。


一、数据集制作

首先下载labelme:
下载方式:

#创建虚拟环境:
conda create -n labelme python=3.8
conda activate labelme
#安装labelme
pip install labelme
#打开
labelme

在这里插入图片描述

打开目录选择自己的图片
点击编辑-创建多边形-进行标注

标注好之后会生成json标签
在这里插入图片描述
使用下面代码将json转化为txt:

# -*- coding: utf-8 -*-
import json
import os
import argparse
from tqdm import tqdm


def convert_label_json(json_dir, save_dir, classes):
    json_paths = os.listdir(json_dir)
    classes = classes.split(',')

    for json_path in tqdm(json_paths):
        # for json_path in json_paths:
        path = os.path.join(json_dir, json_path)
        with open(path, 'r') as load_f:
            json_dict = json.load(load_f)
        h, w = json_dict['imageHeight'], json_dict['imageWidth']

        # save txt path
        txt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))
        txt_file = open(txt_path, 'w')

        for shape_dict in json_dict['shapes']:
            label = shape_dict['label']
            label_index = classes.index(label)
            points = shape_dict['points']

            points_nor_list = []

            for point in points:
                points_nor_list.append(point[0] / w)
                points_nor_list.append(point[1] / h)

            points_nor_list = list(map(lambda x: str(x), points_nor_list))
            points_nor_str = ' '.join(points_nor_list)

            label_str = str(label_index) + ' ' + points_nor_str + '\n'
            txt_file.writelines(label_str)


if __name__ == "__main__":
    """
    python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dogs"
    """
    parser = argparse.ArgumentParser(description='json convert to txt params')
    parser.add_argument('--json-dir', type=str, default=r'F:\1109\json',
                        help='json path dir')
    parser.add_argument('--save-dir', type=str, default=r'F:\1109/txt',
                        help='txt save dir')
    parser.add_argument('--classes', type=str, default='box', help='classes')
    args = parser.parse_args()
    json_dir = args.json_dir
    save_dir = args.save_dir
    classes = args.classes
    convert_label_json(json_dir, save_dir, classes)

在这里插入图片描述
使用如下代码划分数据集:

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
import argparse


# 检查文件夹是否存在
def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def main(image_dir, txt_dir, save_dir):
    # 创建文件夹
    mkdir(save_dir)
    images_dir = os.path.join(save_dir, 'images')
    labels_dir = os.path.join(save_dir, 'labels')

    img_train_path = os.path.join(images_dir, 'train')
    img_test_path = os.path.join(images_dir, 'test')
    img_val_path = os.path.join(images_dir, 'val')

    label_train_path = os.path.join(labels_dir, 'train')
    label_test_path = os.path.join(labels_dir, 'test')
    label_val_path = os.path.join(labels_dir, 'val')

    mkdir(images_dir);
    mkdir(labels_dir);
    mkdir(img_train_path);
    mkdir(img_test_path);
    mkdir(img_val_path);
    mkdir(label_train_path);
    mkdir(label_test_path);
    mkdir(label_val_path);

    # 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改
    train_percent = 0.85
    val_percent = 0.15
    test_percent = 0

    total_txt = os.listdir(txt_dir)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)  # 范围 range(0, num)

    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)
    num_test = num_txt - num_train - num_val

    train = random.sample(list_all_txt, num_train)
    # 在全部数据集中取出train
    val_test = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    val = random.sample(val_test, num_val)

    print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]

        srcImage = os.path.join(image_dir, name + '.jpg')
        srcLabel = os.path.join(txt_dir, name + '.txt')

        if i in train:
            dst_train_Image = os.path.join(img_train_path, name + '.jpg')
            dst_train_Label = os.path.join(label_train_path, name + '.txt')
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
        elif i in val:
            dst_val_Image = os.path.join(img_val_path, name + '.jpg')
            dst_val_Label = os.path.join(label_val_path, name + '.txt')
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)
        else:
            dst_test_Image = os.path.join(img_test_path, name + '.jpg')
            dst_test_Label = os.path.join(label_test_path, name + '.txt')
            shutil.copyfile(srcImage, dst_test_Image)
            shutil.copyfile(srcLabel, dst_test_Label)


if __name__ == '__main__':
    """
    python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data
    """
    parser = argparse.ArgumentParser(description='split datasets to train,val,test params')
    parser.add_argument('--image-dir', type=str, default=r'F:\1109',
                        help='image path dir')
    parser.add_argument('--txt-dir', type=str, default=r'F:\1109\txt',
                        help='txt path dir')
    parser.add_argument('--save-dir', default=r'F:\1109\ccc', type=str,
                        help='save dir')
    args = parser.parse_args()
    image_dir = args.image_dir
    txt_dir = args.txt_dir
    save_dir = args.save_dir

    main(image_dir, txt_dir, save_dir)

效果:
在这里插入图片描述在这里插入图片描述
至此数据集的制作已经完成,接下来开始模型训练。

二、模型训练推理:

制作yaml文件,将训练路径写入文件中:


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
#path: ../VOCdevkit_wpeson_Tanker_01-20/VOC2007/ImageSets/Main
train: /home/build/ccc/images/train/ # train images (relative to 'path')  16551 images

val: /home/build/ccc/images/val/
 
 # train images (relative to 'path')  16551 images
#val: # val images (relative to 'path')  4952 images
#  - val.txt
#test: # test images (optional)
#  - test.txt

# Classes
nc: 1 # number of classes
names: ['box']  # class names


运行下面代码进行模型训练:

from ultralytics import YOLO

# Load a model
model = YOLO("/home/build/下载/ultralytics-main (1)/yolo11n-seg.pt")  # load a pretrained model (recommended for training)

# Train the model with 2 GPUs
results = model.train(data="/home/build/ccc/ccc.yaml", epochs=100, imgsz=640, device="cpu")

模型训练好之后运行下面代码进行推理测试:

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # pretrained YOLO11n model

# Run batched inference on a list of images
results = model(["image1.jpg", "image2.jpg"])  # return a list of Results objects

# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bounding box outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    obb = result.obb  # Oriented boxes object for OBB outputs
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk

猜你喜欢

转载自blog.csdn.net/HanWenKing/article/details/143646982
今日推荐