中国剩余定理模板题

Description:

我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设 m 1 , m 2 , , m k m_{1},m_{2},…,m_{k} 两两互素,则下面同余方程组:

  • x a 1 ( m o d m 1 ) x≡a_{1}(mod m_{1})

  • x a 2 ( m o d m 2 ) x≡a_{2}(mod m_{2})

  • x a k ( m o d m k ) x≡a_{k}(mod m_{k})
    0 < = < m 1 m 2 m k 0<=<m_{1}m_{2}…m_{k} 内有唯一解。
    记Mi=M/m_{i}(1<=i<=k),因为(M_{i},m_{i})=1,故有二个整数 p i , q i p_{i},q_{i} 满足 M i p i + m i q i = 1 M_{i}p_{i}+m_{i}q_{i}=1 ,如果记 e i = M i / p i e_{i}=M_{i}/p_{i} ,那么会有:
    e i 0 ( m o d m j ) , j ! = i e_{i}≡0(mod m_{j}),j!=i
    e i 1 ( m o d m j ) , j = i e_{i}≡1(mod m_{j}),j=i
    很显然, e 1 a 1 + e 2 a 2 + + e k a k e_{1}a_{1}+e_{2}a_{2}+…+e_{k}a_{k} 就是方程组的一个解,这个解加减 M M 的整数倍后就可以得到最小非负整数解。
    这就是中国剩余定理及其求解过程。
    现在有一个问题是这样的:
    一个正整数 N N 除以 M 1 M_{1} ( M 1 a ) (M_{1} - a) ,除以 M 2 M_{2} ( M 2 a ) (M_{2}-a) , 除以 M 3 M_{3} ( M 3 a ) (M_{3}-a) ,总之, 除以 M I M_{I} ( M I a ) (M_{I}-a) ,其中 a < M i < 100 i = 1 , 2 , I (a<M_{i}<100 i=1,2,…I) ,求满足条件的最小的数。

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数 I ( 1 < I < 10 ) I(1<I<10) a a ,其中,I表示M的个数, a a 的含义如上所述,紧接着的一行是 I I 个整数 M 1 , M 1... M I I = 0 M1,M1...MI,I=0 并且 a = 0 a=0 结束输入,不处理。

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
中国剩余定理模板题

AC代码:

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
    int ret = 0, sgn = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            sgn = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    }
    return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
    if (a > 9)
        Out(a / 10);
    putchar(a % 10 + '0');
}

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(int m, int k, int mod)
{
    ll res = 1, t = m;
    while (k)
    {
        if (k & 1)
            res = res * t % mod;
        t = t * t % mod;
        k >>= 1;
    }
    return res;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a, p - 2, p);
}

///扩展欧几里得
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll ans = exgcd(b, a % b, x, y);
    ll temp = x;
    x = y;
    y = temp - a / b * y;
    return ans;
}

///使用ecgcd求a的逆元x
ll mod_reverse(ll a, ll p)
{
    ll d, x, y;
    d = exgcd(a, p, x, y);
    if (d == 1)
        return (x % p + p) % p;
    else
        return -1;
}

///中国剩余定理模板

ll china(ll a[], ll b[], ll n)
{
    ll a1 = a[1], b1 = b[1];
    bool flag = 1;
    for (int i = 2; i <= n; i++)
    {
        ll A = a1, B = a[i], C = b[i] - b1;
        ll x, y;
        ll gcd = exgcd(A, B, x, y);
        if (C % gcd)
        {
            flag = 0;
            break;
        }
        x = ((x * C / gcd) % (B / gcd) + (B / gcd)) % (B / gcd);
        b1 = a1 * x + b1;
        a1 = a1 / gcd * a[i];
    }
    if (b1)
        return b1;
    else
        return a1;
    
}

int n, a;
int main()
{
    while (~sldd(n, a))
    {
        if (n == 0 && a == 0)
            break;
        ll b[15];
        ll c[15];
        for (int i = 1; i <= n; i++)
        {
            sld(b[i]);
            c[i] = b[i] - a;
        }

        ll ans = china(b, c, n);
        pld(ans);
    }
    return 0;
}

发布了611 篇原创文章 · 获赞 390 · 访问量 20万+

猜你喜欢

转载自blog.csdn.net/qq_43627087/article/details/103606014