强化学习Q-leaning算法之走迷宫

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xckkcxxck/article/details/83714696

来自于莫凡大神的强化学习教程,今天学习了走迷宫的小例子。网站网址是:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-2-A-q-learning/

代码如下,一些地方我做了注释:

分三个文件

1.maze_env.py    用thinker实现了迷宫的布局

#!/usr/bin/python3
# -*- coding:utf-8 -*-

"""
Reinforcement learning maze example.
Red rectangle:          explorer.
Black rectangles:       hells       [reward = -1].
Yellow bin circle:      paradise    [reward = +1].
All other states:       ground      [reward = 0].
This script is the environment part of this example. The RL is in RL_brain.py.
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""


import numpy as np
import time
import sys
if sys.version_info.major == 2:  #如果版本号是2
    import Tkinter as tk
else:
    import tkinter as tk


UNIT = 40   # pixels   像素
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']                #行为
        self.n_actions = len(self.action_space)                  #行为数
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_W * UNIT
            self.canvas.create_line(x0, y0, x1, y1)   #画一条从(x0,y0)到(x1,y1)的线
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_H * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell            #画第一个黑色正方形
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell            #画第二个黑色正方形
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval     #画黄色的正方形
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect   #画红色的正方形
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.5)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return self.canvas.coords(self.rect)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT    #减40
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT     #加40
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT    #右移40
        elif action == 3:   # left
            if s[0] > UNIT:               #左移40
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.canvas.coords(self.rect)  # next state

        # reward function
        if s_ == self.canvas.coords(self.oval):
            reward = 1
            done = True
            s_ = 'terminal'
        elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
            reward = -1
            done = True
            s_ = 'terminal'
        else:
            reward = 0
            done = False

        return s_, reward, done

    def render(self):
        time.sleep(0.1)
        self.update()




2.RL_brain.py  实现Q-learning算法的主体:

#!/usr/bin/python3
# -*- coding:utf-8 -*-

"""
This part of code is the Q learning brain, which is a brain of the agent.
All decisions are made in here.
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""

import numpy as np
import pandas as pd


class QLearningTable:
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        '''
        :param actions:    行为
        :param learning_rate: 学习率, 来决定这次的误差有多少是要被学习的
        :param reward_decay: 是折扣因子,表示时间的远近对回报的影响程度,为0表示之看当前状态采取行动的reward。 
        :param e_greedy: 是用在决策上的一种策略, 比如 epsilon = 0.9 时, 就说明有90% 的情况我会按照 Q 表的最优值选择行为, 10% 的时间使用随机选行为
        '''
        self.actions = actions  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy
        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

    def choose_action(self, observation):
        self.check_state_exist(observation)
        # action selection
        if np.random.uniform() < self.epsilon:
            # choose best action
            state_action = self.q_table.loc[observation, :]
            # some actions may have the same value, randomly choose on in these actions
            action = np.random.choice(state_action[state_action == np.max(state_action)].index)
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def learn(self, s, a, r, s_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, :].max()  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update

    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            self.q_table = self.q_table.append(
                pd.Series(
                    [0]*len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            )

3.run_this.py   实现算法更新

#!/usr/bin/python3
# -*- coding:utf-8 -*-

from maze_env import Maze
from RL_brain import QLearningTable


def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        while True:
            # fresh env
            env.render()

            # RL choose action based on observation
            action = RL.choose_action(str(observation))

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL learn from this transition
            RL.learn(str(observation), action, reward, str(observation_))

            # swap observation
            observation = observation_

            # break while loop when end of this episode
            if done:
                break
    print(RL.q_table)
    RL.q_table.to_csv("./1.csv")

    # end of game
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = QLearningTable(actions=list(range(env.n_actions)))
    #print(RL.q_table)

    env.after(100, update)
    #print("hahah")
    #print(RL.q_table)
    env.mainloop()

如果要查看莫凡大神的github,可以去:https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/tree/master/contents/2_Q_Learning_maze

猜你喜欢

转载自blog.csdn.net/xckkcxxck/article/details/83714696