常用泰勒、微积分公式

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sunlanchang/article/details/87931049

常用公式

常用穷小替换

x = > sin x = > tan x = > arcsin x = > arctan x = > ln ( x + 1 ) = > e x 1 x=>\sin x=>\tan x=>\arcsin x=>\arctan x=>\ln (x+1)=>e^x-1
( x + 1 ) a 1 = > a x (x+1)^a-1=>ax
a x 1 = > x l n ( a ) a^x-1=>xln(a)
1 cos x = > 1 2 x 2 1-\cos x=>\frac{1}{2}x^2
tan x sin x = > tan x ( 1 cos x ) = > 1 2 x 3 \tan x-\sin x=>\tan x(1-\cos x)=>\frac{1}{2}x^3

常用泰勒展开式

  • x f ( x ) x-f(x) 展开
    x sin x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3)
    x arcsin x = 1 6 x 3 + o ( x 3 ) x-\arcsin x=-\frac{1}{6}x^3+o(x^3)
    x tan x = 1 3 x 3 + o ( x 3 ) x-\tan x=-\frac{1}{3}x^3+o(x^3)
    x arctan x = 1 3 x 3 + o ( x 3 ) x-\arctan x=\frac{1}{3}x^3+o(x^3)
  • 三角函数展开
    e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)
    sin x = x x 3 3 ! + x 5 5 ! + o ( x 5 ) \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+o(x^5)
    cos x = 1 x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4)
    ln ( x + 1 ) = x 1 2 x 2 + 1 3 x 3 + o ( x 3 ) \ln(x+1)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3)

常用微分公式

d tan x = ( sec x ) 2 d x d\tan x=(\sec x)^2dx
d cot x = ( csc x ) 2 d x d\cot x=-(\csc x)^2dx
d sec x = sec x tan x d x d\sec x=\sec x\tan xdx
d csc x = csc x cot x d x d\csc x=-\csc x\cot xdx
d arcsin x = 1 1 x 2 d x d\arcsin x=\frac{1}{\sqrt{1-x^2}}dx
d arccos x = 1 1 x 2 d x d\arccos x=-\frac{1}{\sqrt{1-x^2}}dx
d arctan x = 1 1 + x 2 d x d\arctan x=\frac{1}{1+x^2}dx
d a r c o t x = 1 1 + x 2 d x darcot x=-\frac{1}{1+x^2}dx

常用高阶导数公式

( e a x ) ( n ) = a n e a n (e^{ax})^{(n)}=a^ne^{an}
( sin a x ) ( n ) = a n sin ( a x + n Π 2 ) (\sin ax)^{(n)}=a^n\sin (ax+n\frac{\Pi}{2})
( cos a x ) ( n ) = a n cos ( a x + n Π 2 ) (\cos ax)^{(n)}=a^n\cos (ax+n\frac{\Pi}{2})
( ln ( 1 + x ) ) ( n ) = ( 1 ) n 1 ( n 1 ) ! ( x + 1 ) n (\ln (1+x))^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(x+1)^n}
( 1 x ) ( n ) = ( 1 ) n n ! x n + 1 (\frac{1}{x})^{(n)}=(-1)^n\frac{n!}{x^{n+1}}

  • 莱布尼茨公式
    ( u v ) ( n ) = u ( n ) v + C n 1 u ( n 1 ) v + C n k u ( n k ) v ( k ) + u v n (uv)^{(n)}=u^{(n)}v+C_n^1u^{(n-1)}v+C_n^ku^{(n-k)}v^{(k)}+uv^{n}

常用积分公式

tan x d x = ln cos x + C \int \tan xdx=-\ln|\cos x|+C
cot x d x = ln sin x + C \int \cot xdx=\ln|\sin x|+C
sec x d x = ln sec x + tan x + C \int \sec xdx=\ln\left|\sec x+\tan x\right|+C
csc x d x = ln csc x cot x + C \int \csc x dx=\ln\left|\csc x-\cot x\right|+C
sec 2 ( x ) d x = tan x + C \int \sec^2(x)dx=\tan x+C
csc x d x = cot x + C \int \csc xdx=\cot x+C
1 a 2 + x 2 d x = 1 a tan ( 1 a x ) + C \int \frac{1}{a^2+x^2}dx=\frac{1}{a}\tan(\frac{1}{a}x)+C
1 a 2 x 2 d x = 1 2 a ln a + x a x + C \int \frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right|+C
1 a 2 x 2 d x = arcsin 1 a x \int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{1}{a}x
1 x 2 ± a 2 d x = ln x + x 2 ± a 2 + C \int \frac{1}{\sqrt{x^2\pm a^2}}dx=\ln|x+\sqrt{x^2\pm a^2}|+C
ln x d x = x ln x x + C \int \ln xdx=x\ln x-x+C

Mathmatica常用命令

  • Solve[x^2 + a x + 1 == 0, x]求方程的解
  • Integrate[f,x,x_min,x_max]求定积分和不定积分
  • Limit[Sin[x]/x, x -> 0]求极限

猜你喜欢

转载自blog.csdn.net/sunlanchang/article/details/87931049