离散时间信号与系统题目

时域表示

计算如下有限长序列的 L 1 L_1 范数、 L 2 L_2 范数和 L L_{\infty} 范数:
(a) { x 1 [ n ] } = { 4.50 2.68 0.14 3.91 2.62 0.43 4.81 3.21 0.55 } \{x_1[n]\}=\{4.50 \quad-2.68 \quad-0.14 \quad3.91 \quad2.62\quad-0.43\quad-4.81\quad3.21\quad-0.55\}
(b) { x 2 [ n ] } = { 0.92 2.34 3.37 1.90 2.59 0.75 3.48 3.33 } \{x_2[n]\}=\{0.92\quad2.34\quad3.37\quad1.90\quad-2.59\quad-0.75\quad3.48\quad3.33\}

解:
x = ( x [ n ] p ) 1 / p \lVert x \rVert =(\sum_{-\infty}^{\infty}|x[n]|^p)^{1/p}
x 1 = x [ n ] x 2 = ( x [ n ] 2 ) 1 / 2 \lVert x \rVert _1=\sum_{-\infty}^{\infty}|x[n]| \quad \lVert x \rVert _2=(\sum_{-\infty}^{\infty}|x[n]|^2)^{1/2}
x = x m a x \lVert x \rVert _\infty=|x|_{max}
(a) x 1 1 = 22.85 x 1 2 = 9.1396 x 1 = 4.81 \lVert x_1 \rVert _1=22.85 \quad \lVert x_1 \rVert _2=9.1396 \quad \lVert x_1 \rVert _\infty=4.81
(b) x 2 1 = 18.68 x 2 2 = 7.1944 x 2 = 3.48 \lVert x_2 \rVert _1=18.68 \quad \lVert x_2 \rVert _2=7.1944 \quad \lVert x_2 \rVert _\infty=3.48

请参考这篇文章离散时间信号的时域表示


序列的运算

基本运算

已知序列
x [ n ] = { 2 , 0 , 1 , 6 , 3 , 2 , 0 } , 3 n 3 y [ n ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 } , 5 n 1 w [ n ] = { 3 , 6 , 1 , 2 , 6 , 6 , 1 } , 2 n 4 \begin{aligned} x[n]&=\{2,0,-1,6,-3,2,0\},\quad &-3 &\leq n \leq 3 \\ y[n]&=\{8,2,-7,-3,0,1,1\}, \quad &-5 &\leq n \leq 1 \\ w[n]&=\{3,6,-1,2,6,6,1\},\quad &-2 &\leq n \leq 4 \end{aligned}
上述序列在给定区间以外的样本值都为零。生成以下序列:
( a ) c [ n ] = x [ n + 3 ] ( b ) d [ n ] = y [ n 2 ] ( c ) e [ n ] = x [ n ] ( d ) u [ n ] = x [ n 3 ] + y [ n + 3 ] ( e ) v [ n ] = y [ n 3 ] w [ n + 2 ] ( f ) s [ n ] = y [ n + 4 ] w [ n 3 ] ( g ) r [ n ] = 3.9 w [ n ] \begin{aligned} &(a)c[n]=x[n+3] \\ &(b)d[n]=y[n-2]\\ &(c)e[n]=x[-n]\\ &(d)u[n]=x[n-3]+y[n+3]\\ &(e)v[n]=y[n-3] \cdot w[n+2]\\ &(f)s[n]=y[n+4]-w[n-3] \\ &(g)r[n]=3.9w[n] \end{aligned}

解:
(a)序列 x [ n ] x[n] 左移 3 3 个单位,则
c [ n ] = { 2 , 0 , 1 , 6 , 3 , 2 , 0 } , 6 n 0 c[n]=\{2,0,-1,6,-3,2,0\},\quad -6 \leq n \leq 0
(b)序列 y [ n ] y[n] 右移 2 2 个单位,则
( b ) d [ n ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 } , 3 n 3 (b)d[n]=\{8,2,-7,-3,0,1,1\}, \quad -3 \leq n \leq 3
(c)序列 x [ n ] x[n] 反褶,则
e [ n ] = { 0 , 2 , 3 , 6 , 1 , 0 , 2 } 3 n 3 e[n]=\{0,2,-3,6,-1,0,2\},\quad -3 \leq n \leq 3
(d) x [ n ] x[n] 右移 3 3 个单位得到
x [ n 3 ] = { 2 , 0 , 1 , 6 , 3 , 2 , 0 } , 0 n 6 x[n-3]=\{2,0,-1,6,-3,2,0\},\quad 0 \leq n \leq 6
y [ n ] y[n] 左移 3 3 个单位得到
y [ n + 3 ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 } , 8 n 2 y[n+3]=\{8,2,-7,-3,0,1,1\}, \quad -8 \leq n \leq -2

u [ n ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 , 0 , 2 , 0 , 1 , 6 , 3 , 2 , 0 } 8 n 6 u[n]=\{8,2,-7,-3,0,1,1,0,2,0,-1,6,-3,2,0\}-8 \leq n \leq 6
(e) y [ n ] y[n] 右移 3 3 个单位得到
y [ n 3 ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 } , 2 n 4 y[n-3]=\{8,2,-7,-3,0,1,1\}, \quad -2 \leq n \leq 4
w [ n ] w[n] 左移 2 2 个单位得到
w [ n + 2 ] = { 3 , 6 , 1 , 2 , 6 , 6 , 1 } , 4 n 2 w[n+2]=\{3,6,-1,2,6,6,1\},\quad -4 \leq n \leq 2

v [ n ] = { 0 , 0 , 8 , 4 , 42 , 18 , 0 , 0 , 0 } 4 n 4 v[n]=\{0,0,-8,4,-42,-18,0,0,0\}\quad -4 \leq n \leq 4
(f) y [ n ] y[n] 左移 4 4 个单位得到
y [ n + 4 ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 } , 9 n 3 y[n+4]=\{8,2,-7,-3,0,1,1\}, \quad -9 \leq n \leq -3
w [ n ] w[n] 右移 3 3 个单位得到
w [ n 3 ] = { 3 , 6 , 1 , 2 , 6 , 6 , 1 } , 1 n 7 w[n-3]=\{3,6,-1,2,6,6,1\},\quad 1 \leq n \leq 7

s [ n ] = { 8 , 2 , 7 , 3 , 0 , 1 , 1 , 0 , 0 , 0 , 3 , 6 , 1 , 2 , 6 , 6 , 1 } , 9 n 7 s[n]=\{8,2,-7,-3,0,1,1,0,0,0,-3,-6,1,-2,-6,-6,-1\},\quad -9 \leq n \leq 7
(g) r [ n ] = { 11.7 , 23.4 , 3.9 , 7.8 , 23.4 , 23.4 , 3.9 } , 2 n 4 r[n]=\{11.7 , 23.4 , -3.9, 7.8 ,23.4 ,23.4 ,3.9\},\quad -2 \leq n \leq 4



卷积运算

证明一个长度为 M M 的序列与一个长度为 N N 的序列进行卷积,可得到一个长度为 ( M + N 1 ) (M+N-1) 的序列。

  参考这篇文章中卷积后的长度部分


x [ n ] x[n] y [ n ] y[n] w [ n ] w[n] 分别表示长度为 N M N、M L L 的三个序列,每个序列的第一个样本都出现在 n = 0 n=0 处,序列 x [ n ] y [ n ] w [ n ] x[n]*y[n]*w[n] 的长度是多少?
解:
  借用上题的结论,两序列卷积后的长度为两序列长度之和减一。

  令 h [ n ] = x [ n ] y [ n ] h[n]=x[n]*y[n] ,则序列 h [ n ] h[n] 的长度为 H = M + N 1 H=M+N-1 ,所以序列 h [ n ] w [ n ] h[n]*w[n] 的长度为 H + L 1 = M + N + L 2 H+L-1=M+N+L-2 ,所以序列 x [ n ] y [ n ] w [ n ] x[n]*y[n]*w[n] 的长度为 M + N + L 2 M+N+L-2


求下面序列与其自身的卷积
x [ n ] = { 1 ,   1 ,   1 } , 1 n 1 x[n]=\{1, \, -1, \, 1\}, -1 \leq n \leq 1
解:

所以 x [ n ] x [ n ] = { 1 ,   2 ,   3 ,   2 ,   1 } 2 n 2 x[n]*x[n]=\{1, \, -2, \, \mathop{3}\limits_{\uparrow}, \, -2, \, 1\} -2 \leq n \leq 2

可以观察到 x [ n ] x[n] 它是左右对称的,事实上序列自己与自己卷积得到的序列都是左右对称的。

  不理解上述计算卷积算法的,请参考用多项式乘法快速计算卷积


y [ n ] = x 1 [ n ] x 2 [ n ] y[n]=x_1[n]*x_2[n] v [ n ] = x 1 [ n N 1 ] x 2 [ n N 2 ] v[n]=x_1[n-N_1]*x_2[n-N_2] ,试用 y [ n ] y[n] 来表示 v [ n ] v[n]
解:
首先从数学的角度对公式进行推导
y [ n ] = x 1 [ n ] x 2 [ n ] = m = x 1 [ m ] x 2 [ n m ] y[n]=x_1[n]*x_2[n]=\sum_{m=-\infty}^{\infty}x_1[m]x_2[n-m]
v [ n ] = x 1 [ n N 1 ] x 2 [ n N 2 ] = m = x 1 [ m N 1 ] x 2 [ n m N 2 ] v[n]=x_1[n-N_1]*x_2[n-N_2]=\sum_{m=-\infty}^{\infty}x_1[m-N_1]x_2[n-m-N_2]
k = m N 1 k=m-N_1 得到
v [ n ] = k = x 1 [ k ] x 2 [ n ( N 1 + k ) N 2 ] = k = x 1 [ k ] x 2 [ ( n N 1 N 2 ) k ] = y [ n N 1 N 2 ] v[n]=\sum_{k=-\infty}^{\infty}x_1[k]x_2[n-(N1+k)-N_2]=\sum_{k=-\infty}^{\infty}x_1[k]x_2[(n-N_1-N_2)-k]=y[n-N_1-N_2]
重点是怎么理解这一个结果,该结果表明,如果序列 x 1 [ n ] x_1[n] 时移 N 1 N_1 x 2 [ n ] x_2[n] 时移 N 2 N_2 ,那么卷积后的序列 y [ n ] y[n] 时移 N 1 + N 2 N_1+N_2


x [ n ] = { 1 } x[n]=\{1\} 是定义在 0 n N 1 0 \leq n \leq N-1 长度为 N N 的序列,而 h [ n ] = { 1 } h[n]=\{1\} 是定义在 0 n N 3 0 \leq n \leq N-3 范围内长度为 N 2 N-2 的序列,不进行卷积运算,求 y [ n ] = x [ n ] h [ n ] y[n]=x[n]*h[n] 最大样本的值的位置。
解:
由于序列 x [ n ] h [ n ] x[n]、h[n] 的每一项的数值都是 1 1 ,所以 x [ n ] x[n] h [ n ] h[n] 各项对应的乘积也为 1 1 ,所以要使 y [ n ] y[n] 最大,就得包含更多的项相加,由于 h [ n ] h[n] 的长度小于 x [ n ] x[n] ,所以最大包含 h [ n ] h[n] 的长度 N 2 N-2 项,所以由
y [ n ] = x [ n ] h [ n ] = m = h [ m ] x [ n m ] y[n]=x[n]*h[n]=\sum_{m=-\infty}^{\infty}h[m]x[n-m]
所以有
0 m N 3 0 n m N 1 0 \leq m \leq N-3 \\ 0 \leq n-m \leq N-1\\
由于要保证要取到所有的 h [ n ] h[n] 才能保证 y [ n ] y[n] 最大,所以对于任意
0 m N 3 0 \leq m \leq N - 3 存在
0 n m N 1 0 \leq n - m \leq N - 1

m m a x n m m i n + N 1 N 3 n N 1 m_{max} \leq n \leq m_{min}+N-1 \Rightarrow N-3 \leq n \leq N-1
所以 N 3 , N 2 , N 1 N-3,N-2,N-1 y [ n ] y[n] 有最大值为 N 2 N-2



圆周运算

考虑序列 g [ n ] = { 3 , 0 , 4 , 9 , 2 , 0 , 2 , 5 } , 4 n 3 g[n]=\{-3, 0, 4, 9, 2, 0, -2, 5\},\quad -4 \leq n \leq 3
(a) g [ n ] g[n] 向右圆周平移5个样本周期得到的序列 h [ n ] h[n]
(b) g [ n ] g[n] 向左圆周平移4个样本周期得到的序列 w [ n ] w[n]
解:
(a)
h [ n ] = { 9 , 2 , 0 , 2 , 5 , 3 , 0 , 4 } 4 n 3 h[n]=\{9, 2, 0, -2, 5, -3, 0, 4\} \quad -4 \leq n \leq 3
(b)
w [ n ] = { 5 , 3 , 0 , 4 , 9 , 2 , 0 , 2 } 4 n 3 w[n]=\{5, -3, 0, 4, 9, 2, 0, -2\} \quad -4 \leq n \leq 3



序列的分类

基于对称性的分类

证明实数值序列 x [ n ] x[n] 的平均功率 P x P_x 是其偶部和奇部平均功率 P x e v P_{x_{ev}} P x o d P_{x_{od}} 之和。
解:
P x = 1 2 K + 1 n = K K x [ n ] 2 = 1 2 K + 1 n = K K ( x e v [ n ] + x o d [ n ] ) 2 = 1 2 K + 1 ( n = K K ( x e v [ n ] ) 2 + n = K K ( x o d [ n ] ) 2 + 2 n = K K x e v [ n ] x o d [ n ] ) = P x e v + P x o d + 2 2 K + 1 n = K K ( ( x [ n ] + x [ n ] ) ( x [ n ] x [ n ] ) ) = P x e v + P x o d + 2 2 K + 1 ( n = K K x [ n ] 2 n = K K x [ n ] 2 ) = P x e v + P x o d \begin{aligned} P_x&=\frac{1}{2K+1}\sum_{n=-K}^{K}\vert x[n] \vert ^2=\frac{1}{2K+1}\sum_{n=-K}^{K}(x_{ev}[n]+x_{od}[n])^2 \\ &=\frac{1}{2K+1}\big(\sum_{n=-K}^{K}(x_{ev}[n]) ^2+\sum_{n=-K}^{K}(x_{od}[n]) ^2+2\sum_{n=-K}^{K}x_{ev}[n]x_{od}[n]\big) \\ &=P_{x_{ev}}+P_{x_{od}}+\frac{2}{2K+1}\sum_{n=-K}^{K}\big((x[n]+x[-n])(x[n]-x[-n])\big) \\ &=P_{x_{ev}}+P_{x_{od}}+\frac{2}{2K+1}(\sum_{n=-K}^{K}x[n]^2-\sum_{n=-K}^{K}x[-n]^2) \\ &=P_{x_{ev}}+P_{x_{od}} \end{aligned}
上式用到了
n = K K x [ n ] 2 n = K K x [ n ] 2 = 0 \sum_{n=-K}^{K}x[n]^2-\sum_{n=-K}^{K}x[-n]^2=0


求序列 x [ n ] = { 1 + j 3 , 2 j 7 , 4 j 5 , 3 + j 5 , 2 j } , 2 n 2 x[n]=\{-1+j3,2-j7,4-j5,3+j5,-2-j\},-2 \leq n \leq 2 的共轭对称部分和共轭反对称部分。
解:
x [ n ] = { 2 j , 3 + j 5 , 4 j 5 , 2 j 7 , 1 + j 3 } , 2 n 2 x[-n]=\{-2-j,3+j5,4-j5,2-j7,-1+j3\},-2 \leq n \leq 2
x [ n ] = { 2 + j , 3 j 5 , 4 + j 5 , 2 + j 7 , 1 j 3 } , 2 n 2 x^{*}[-n]=\{-2+j,3-j5,4+j5,2+j7,-1-j3\},-2 \leq n \leq 2
x c s [ n ] = ( x [ n ] + x [ n ] ) / 2 = { 1.5 + j 2 , 2.5 j 6 , 4 , 2.5 + j 6 , 1.5 j 2 } x_{cs}[n]=(x[n]+x^{*}[-n])/2=\{-1.5+j2,2.5-j6,4,2.5+j6,-1.5-j2\}
x c a [ n ] = ( x [ n ] x [ n ] ) / 2 = { 0.5 + j , 0.5 j , j 5 , 0.5 j , 0.5 + j } x_{ca}[n]=(x[n]-x^{*}[-n])/2=\{0.5+j,-0.5-j,-j5,0.5-j,-0.5+j\}


证明当所有 n 0 n \geq 0 时,因果序列 x [ n ] x[n] 可以从它的偶部 x e v [ n ] x_{ev}[n] 中完全恢复出来,而当所有 n > 0 n>0 才可从它的奇部 x o d [ n ] x_{od}[n] 中恢复出来。
解:
由于序列 x [ n ] x[n] 为因果序列,则 x [ n ] = 0 , n > 0 x[-n]=0,n>0 。由于
x e v [ n ] = 1 2 ( x [ n ] + x [ n ] ) x_{ev}[n]=\frac{1}{2}(x[n]+x[-n])
n = 0 n=0时 , x [ 0 ] = x e v [ 0 ] x[0]=x_{ev}[0]
n > 0 n>0 时, x [ n ] = 2 x e v [ n ] x[n]=2x_{ev}[n]
所以
x [ n ] = { 2 x e v [ n ] ,   n > 0 x e v [ 0 ] ,   n = 0 0 ,   n < 0 x[n]= \begin{cases} 2x_{ev}[n],\, &n > 0 \\ x_{ev}[0], \, &n = 0 \\ 0, \, &n < 0 \end{cases}

x o d [ n ] = 1 2 ( x [ n ] x [ n ] ) x_{od}[n]=\frac{1}{2}(x[n]-x[-n])
n = 0 n=0 时, x [ 0 ] = 0 x[0]=0
n > 0 n>0 时, x [ n ] = 2 x o d [ n ] x[n]=2x_{od}[n]
所以
x [ n ] = { 2 x o d [ n ] ,   n > 0 0 ,   n 0 x[n]= \begin{cases} 2x_{od}[n],\, &n > 0 \\ 0, \, &n \leq 0 \end{cases}


因果复序列 y [ n ] y[n] 能够从它的共轭对称部分 y c s [ n ] y_{cs}[n] 中完全恢复出来吗?能从它的反共轭对称部分 y c a [ n ] y_{ca}[n] 中恢复出来吗?证明你的结论。
解:
  因为 y [ n ] y[n] 为因果序列,所以 y [ n ] = 0 , n > 0 y^{*}[-n]=0,n>0 ,由
y c s [ n ] = 1 2 ( y [ n ] + y [ n ] ) y_{cs}[n]=\frac{1}{2}(y[n]+y^{*}[-n])
n = 0 n=0 时, y r e [ 0 ] = y c s [ 0 ] y_{re}[0]=y_{cs}[0]

n > 0 n>0 时, y [ n ] = 2 y c s [ n ] y[n]=2y_{cs}[n]

由于在 n = 0 n=0 时,只能恢复出实部,所以由共轭对称部分不能完全恢复出 y [ n ] y[n]

  同理,共轭反对称部分在 n = 0 n=0 只能恢复出 y i m [ 0 ] y_{im}[0] ,也不能完全恢复出 y [ n ] y[n]


考虑以各自共轭对称和共轭反对称之和的形式表示的两个复值序列 h [ n ] h[n] g [ n ] g[n] ,即 h [ n ] = h c s [ n ] + h c a [ n ] h[n]=h_{cs}[n]+h_{ca}[n] g [ n ] = g c s [ n ] + g c a [ n ] g[n]=g_{cs}[n]+g_{ca}[n] 。试确定下列序列是共轭对称还是共轭反对称的。
(a) y 1 [ n ] = h c s [ n ] g c s [ n ] y_1[n]=h_{cs}[n]*g_{cs}[n]
(b) y 2 [ n ] = h c a [ n ] g c s [ n ] y_2[n]=h_{ca}[n]*g_{cs}[n]
(c) y 3 [ n ] = h c a [ n ] g c a [ n ] y_3[n]=h_{ca}[n]*g_{ca}[n]
解:
(a)
y 1 [ n ] = m = h c s [ m ] g c s [ n m ] y 1 [ n ] = ( m = h c s [ m ] g c s [ ( n m ) ] ) = m = h c s [ m ] g c s [ ( n m ) ] = m = h c s [ m ] g c s [ n m ] = y 1 [ n ] \begin{aligned} y_1[n]&=\sum_{m=-\infty}^{\infty}h_{cs}[m]g_{cs}[n-m] \\ y^{*}_1[-n]&=(\sum_{m=-\infty}^{\infty}h_{cs}[-m]g_{cs}[-(n-m)])^{*} \\ &=\sum_{m=-\infty}^{\infty}h^{*}_{cs}[-m]g^{*}_{cs}[-(n-m)] \\ &=\sum_{m=-\infty}^{\infty}h_{cs}[m]g_{cs}[n-m] \\ &=y_1[n] \end{aligned}
(b)
y 2 [ n ] = y 2 [ n ] y_2[n]=-y^{*}_2[-n]
(c)
y 3 [ n ] = y 3 [ n ] y_3[n]=y^{*}_3[-n]


能量信号与功率信号

计算长度为 N N 的序列 x [ n ] = s i n ( 2 π k n / N ) x[n]=sin(2\pi kn/N) 的能量, 0 n N 1 0 \leq n \leq N-1
解:
ε 2 = n = 0 N 1 s i n 2 ( 2 π k n / N ) = n = 0 N 1 1 2 1 2 c o s ( 4 π k n / N ) = N 2 1 2 n = 0 N 1 c o s ( 4 π k n / N ) \begin{aligned} \varepsilon^2&=\sum_{n=0}^{N-1}sin^2(2\pi kn/N)=\sum_{n=0}^{N-1}\frac{1}{2}-\frac{1}{2}cos(4\pi kn /N) \\ &=\frac{N}{2}-\frac{1}{2}\sum_{n=0}^{N-1}cos(4\pi kn /N) \end{aligned}
C = n = 0 N 1 c o s ( 4 π k n / N ) , S = n = 0 N 1 s i n ( 4 π k n / N ) C=\sum_{n=0}^{N-1}cos(4\pi kn /N),S=\sum_{n=0}^{N-1}sin(4\pi kn /N)

C + j S = n = 0 N 1 e j 4 π k n N = ( 1 e j 4 π k N N ) 1 e j 4 π k N = 0 C+jS=\sum_{n=0}^{N-1}e^{-j\frac{4\pi kn}{N}}=\frac{(1-e^{-j\frac{4\pi kN}{N}})}{1-e^{-j\frac{4\pi k}{N}}} = 0
这说明 C = 0 C=0 ,所以
ε 2 = N 2 \varepsilon^2=\frac{N}{2}


计算下列序列的能量:
(a) x a [ n ] = A α n μ [ n ] , α < 1 , x_a[n]=A\alpha^n\mu[n],\vert \alpha \vert <1,
(b) x b [ n ] = 1 n 2 μ [ n 1 ] x_b[n]=\frac{1}{n^2}\mu[n-1]
解:
(a) ε a 2 = n = 0 A 2 ( α 2 ) n = A 2 1 α 2 \varepsilon^2_a=\sum_{n=0}^{\infty}A^2(\alpha^2)^n=\frac{A^2}{1-\alpha^2}
(b) ε b 2 = n = 1 1 n 4 = π 4 90 \varepsilon^2_b=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90}


周期序列和非周期序列

求下列周期序列的基本周期:
(a) x ~ a [ n ] = e j 0.25 π n \tilde{x}_a[n]=e^{j0.25\pi n}
(b) x ~ b [ n ] = R e ( e j π n / 8 ) + I m ( e j π n / 5 ) \tilde{x}_b[n]=Re(e^{j\pi n /8})+Im(e^{j\pi n/5})
解:
(a)
2 π 0.25 π = 8 \frac{2\pi}{0.25\pi}=8 所以周期 N = 8 N=8
(b)
2 π π / 8 = 16 \frac{2\pi}{\pi/8}=16 所以 N 1 = 16 N_1=16
2 π π / 5 = 10 \frac{2\pi}{\pi/5}=10 所以 N 2 = 10 N_2=10
  所以周期为二者的最小公倍数
N = L C M ( N 1 , N 2 ) = L C M ( 16 , 10 ) = 80 N=LCM(N_1,N_2)=LCM(16,10)=80


其他分类

证明序列 x [ n ] = ( 1 ) n + 1 n μ [ n ] x[n]=\frac{(-1)^{n+1}}{n}\mu[n] 不是绝对可和的。
解:
n = x [ n ] = n = 1 1 n = \sum_{n=-\infty}^{\infty}\vert x[n] \vert = \sum_{n=1}^{\infty}\frac{1}{n}=\infty


证明下面序列是绝对可和的。
(a) x 1 [ n ] = α n μ [ n 1 ] x_1[n]=\alpha^n\mu[n-1]
(b) x 2 [ n ] = n α n μ [ n 1 ] x_2[n]=n\alpha^n\mu[n-1]
其中 α < 1 \vert \alpha \vert < 1
解:
(a) n = 1 α n = α 1 α < \sum_{n=1}^{\infty}\vert \alpha \vert^n=\frac{\vert \alpha \vert}{1-\vert \alpha \vert} <\infty
(b)
n = 1 n α n = n = 1 n α n = α + 2 α 2 + 3 α 3 + . . . + n α n + . . . = ( α + α 2 + α 3 + . . . + α n + . . . ) + ( α 2 + α 3 + . . . + α n + . . . ) + ( α 3 + . . . + α n + . . . ) + . . . = α 1 α + α 2 1 α + α 3 1 α + . . . + α n 1 α + . . . = 1 1 α n = 1 α n = α ( 1 α ) 2 < \begin{aligned} \sum_{n=1}^{\infty}\vert n\alpha \vert^n&=\sum_{n=1}^{\infty}n\vert \alpha \vert^n \\ &=\vert \alpha \vert+2\vert \alpha \vert^2+3\vert \alpha \vert^3+...+n\vert \alpha \vert^n + ... \\ &=(\vert \alpha \vert+\vert \alpha \vert^2+\vert \alpha \vert^3+...+\vert \alpha \vert^n+...)+ \\ &\quad (\vert \alpha \vert^2+\vert \alpha \vert^3+...+\vert \alpha \vert^n+...)+ \\ &\quad (\vert \alpha \vert^3 + ... + \vert \alpha \vert^n + ...) + \\ &\quad ... \\ &=\frac{\vert \alpha \vert}{1-\vert \alpha \vert}+\frac{\vert \alpha \vert^2}{1-\vert \alpha \vert}+\frac{\vert \alpha \vert^3}{1-\vert \alpha \vert}+...+\frac{\vert \alpha \vert^n}{1-\vert \alpha \vert}+... \\ &=\frac{1}{1-\vert \alpha \vert}\sum_{n=1}^{\infty}\vert \alpha \vert^n \\ &=\frac{\vert \alpha \vert}{(1-\vert \alpha \vert)^2} < \infty \end{aligned}


下面序列中,哪些序列是有界序列?
(a) x [ n ] = A α n x[n]=A\alpha^{n } ,其中 A A α \alpha 是复数,且 α < 1 \vert\alpha\vert<1
(b) v [ n ] = ( 1 1 n 2 ) μ [ n 1 ] v[n]=(1-\frac{1}{n^2})\mu[n-1]
解:
(a)
x [ n ] = A α n \vert x[n]\vert=\vert A\vert \vert \alpha \vert^n
对于 n < 0 n<0 存在 n n 使得 x [ n ] = \vert x[n]\vert=\infty ,所以 x [ n ] x[n] 不是有界序列
(b)
v [ n ] = 1 1 n 2 , n 1 \vert v[n]\vert=\vert 1 -\frac{1}{n^2}\vert,n\geq1
v [ n ] < 1 \vert v[n]\vert<1
所以序列 v [ n ] v[n] 是有界序列。


典型序列及其表示

使用单位阶跃序列 μ [ n ] \mu[n] 表示序列 x [ n ] = 1 , < n < x[n]=1,-{\infty}<n<{\infty}
解:
x [ n ] = μ [ n ] + μ [ n 1 ] x[n]=\mu[n] + \mu[-n-1]


单位抽样序列 δ [ n ] \delta[n] 与单位阶跃序列 μ [ n ] \mu[n] 的关系。
解:
δ [ n ] = μ [ n + 1 ] μ [ n ] \delta[n]=\mu[n+1]-\mu[n]
μ [ n ] = m = 0 δ [ n m ] = m = n δ [ m ] \mu[n]=\sum_{m=0}^{\infty}\delta[n-m]=\sum_{m=-\infty}^{n}\delta[m]


试用单位阶跃序列 μ [ n ] \mu[n] 表示序列
x [ n ] = { 2 , n 2 1 , n < 2 x[n]= \begin{cases} 2, \quad &n\geq2 \\ 1, \quad &n < 2 \end{cases}
解:
x [ n ] = μ [ n 2 ] + μ [ n + 3 ] x[n]=\mu[n-2]+\mu[-n+3]


求下列卷积和的闭式表示:
(a) α n μ [ n ] μ [ n ] \alpha^n\mu[n]*\mu[n]
(b) n α n μ [ n ] μ [ n ] n\alpha^n\mu[n]*\mu[n]
解:
(a)
α n μ [ n ] μ [ n ] = m = 0 n α m = 1 α n + 1 1 α , n 0 \alpha^n\mu[n]*\mu[n]=\sum_{m=0}^{n}\alpha^m=\frac{1-\alpha^{n+1}}{1-\alpha},\quad n\geq 0
(b)
n α n μ [ n ] μ [ n ] = m = 0 n m α m , n 0 n\alpha^n\mu[n]*\mu[n]=\sum_{m=0}^{n}m\alpha^m,\quad n\geq0


信号的相关

求下面序列的自相关序列,并证明它们均为偶序列,自相关序列最大值的位置在哪里?
(a) x 1 [ n ] = α n μ [ n ] , α < 1 x_1[n]=\alpha^n\mu[n], \vert \alpha \vert < 1
(b) x 2 [ n ] = { 1 , 0 n N 1 0 , x_2[n]= \begin{cases} 1, \quad 0 \leq n \leq N-1 \\ 0, \quad 其它 \end{cases}
解:
(a) r a [ l ] = n = x 1 [ n ] x 1 [ n l ] = n = α n μ [ n ] α n l μ [ n l ] \begin{aligned} r_a[l]&=\sum_{n=-\infty}^{\infty}x_1[n]x_1[n-l]\\ &=\sum_{n=-\infty}^{\infty}\alpha^n\mu[n]\alpha^{n-l}\mu[n-l] \end{aligned}
l 0 l\geq0 时,则
r a [ l ] = n = l α l ( α 2 ) n = α l α 2 l 1 α 2 = α l 1 α 2 \begin{aligned} r_a[l]=\sum_{n=l}^{\infty}\alpha^{-l}(\alpha^2)^n =\alpha^{-l}\frac{\alpha^{2l}}{1-\alpha^2} =\frac{\alpha^l}{1-\alpha^2} \end{aligned}
l < 0 l<0 时,则
r a [ l ] = n = 0 α l ( α 2 ) n = α l 1 1 α 2 = α l 1 α 2 \begin{aligned} r_a[l]=\sum_{n=0}^{\infty}\alpha^{-l}(\alpha^2)^n =\alpha^{-l}\frac{1}{1-\alpha^2} =\frac{\alpha^{-l}}{1-\alpha^2} \end{aligned}
所以
r a [ l ] = { α l 1 α 2 ,   l 0 α l 1 α 2 ,   l < 0 = α l 1 α 2 r_a[l]= \begin{cases} \frac{\alpha^l}{1-\alpha^2}, \, & l \geq 0 \\ \\ \frac{\alpha^{-l}}{1-\alpha^2}, \, & l < 0 \end{cases} =\frac{\alpha^{\vert l \vert}}{1-\alpha^2}
l = 0 l=0 时, r a [ l ] r_a[l] 最大,最大为 1 1 α 2 \frac{1}{1-\alpha^2}
r a [ l ] = α l 1 α 2 = r a [ l ] r_a[-l]=\frac{\alpha^{\vert l \vert}}{1-\alpha^2}=r_a[l]
所以 r a [ l ] r_a[l] 为偶序列。
(b)
解:
r b [ l ] = n = x b [ n ] x b [ n l ] r_b[l]=\sum_{n=-\infty}^{\infty}x_b[n]x_b[n-l]
如果 l + N 1 < 0 l+N-1<0 ,即 l < N + 1 l<-N+1 r b [ l ] = 0 r_b[l]=0
如果 0 l + N 1 < N 1 0\leq l + N - 1 < N-1 ,即 N + 1 l < 0 -N+1\leq l<0 ,则
r b [ l ] = n = 0 l + N 1 1 = l + N r_b[l]=\sum_{n=0}^{l+N-1}1=l+N
如果 0 l N 1 0\leq l\leq N-1 ,则
r b [ l ] = n = l N 1 1 = N l r_b[l]=\sum_{n=l}^{N-1}1=N-l
如果 l > N 1 l > N-1 ,则 r b [ l ] = 0 r_b[l]=0
所以
r b [ l ] = { N l ,   l N 1 0 ,   l > N 1 r_b[l]= \begin{cases} N-\vert l \vert, \, & \vert l \vert \leq N-1 \\ \\ 0, \, & \vert l\vert > N-1 \end{cases}
l = 0 l=0 时, r b [ l ] r_b[l] 有最大值为 r b [ 0 ] = N r_b[0]=N
r b [ l ] = r b [ l ] r_b[-l]=r_b[l]
所以序列 r b [ l ] r_b[l] 为偶序列。


计算下列各周期序列的自相关序列以及它们的周期:
(a) x ~ 1 [ n ] = c o s ( π n / M ) \tilde{x}_1[n]=cos(\pi n/M) ,其中 M M 为正整数
(b) x ~ 2 [ n ] = n 6 \tilde{x}_2[n]=n 模 6
(c) x ~ 3 [ n ] = ( 1 ) n \tilde{x}_3[n]=(-1)^n
解:
(a) 2 π π / M = 2 M \frac{2\pi}{\pi /M}=2M
所以序列 x ~ 1 [ n ] \tilde{x}_1[n] 的周期为 2 M 2M ,则
r ~ [ l ] = 1 2 M n = 0 2 M 1 c o s ( π n M ) c o s ( π ( n l ) M ) = 1 2 M n = 0 2 M 1 c o s ( π n M ) { c o s ( π n M ) c o s ( π l M ) + s i n ( π n M ) s i n ( π l M ) } ) = 1 2 M c o s ( π l M ) n = 0 2 M 1 c o s 2 ( π n M ) + 1 4 M s i n ( π l M ) n = 0 2 M 1 s i n ( 2 π n M ) = 1 2 M c o s ( π l M ) n = 0 2 M 1 c o s 2 ( π n M ) = 1 2 M c o s ( π l M ) n = 0 2 M 1 1 2 ( 1 + c o s ( 2 π n M ) ) \begin{aligned} \tilde{r}[l]&=\frac{1}{2M}\sum_{n=0}^{2M-1}cos(\frac{\pi n}{M})cos(\frac{\pi (n-l)}{M}) \\ &=\frac{1}{2M}\sum_{n=0}^{2M-1}cos(\frac{\pi n}{M})\{cos(\frac{\pi n}{M})cos(\frac{\pi l}{M})+sin(\frac{\pi n}{M})sin(\frac{\pi l}{M})\})\\ &=\frac{1}{2M}cos(\frac{\pi l}{M})\sum_{n=0}^{2M-1}cos^2(\frac{\pi n}{M})+\frac{1}{4M}sin(\frac{\pi l}{M})\sum_{n=0}^{2M-1}sin(\frac{2\pi n}{M})\\ &=\frac{1}{2M}cos(\frac{\pi l}{M})\sum_{n=0}^{2M-1}cos^2(\frac{\pi n}{M})\\ &=\frac{1}{2M}cos(\frac{\pi l}{M})\sum_{n=0}^{2M-1}\frac{1}{2}(1+cos(\frac{2\pi n}{M})) \end{aligned}
考虑 n = 0 2 M 1 1 2 ( 1 + c o s ( 2 π n M ) ) \sum_{n=0}^{2M-1}\frac{1}{2}(1+cos(\frac{2\pi n}{M})) 并令 N = 2 M N=2M ,则
n = 0 N 1 1 2 ( 1 + c o s ( 4 π n N ) ) = N 2 + 1 2 n = 0 N 1 c o s ( 4 π n N ) \sum_{n=0}^{N-1}\frac{1}{2}(1+cos(\frac{4\pi n}{N}))=\frac{N}{2}+\frac{1}{2}\sum_{n=0}^{N-1}cos(\frac{4\pi n}{N})
C = n = 0 N 1 c o s ( 4 π n N ) , S = n = 0 N 1 s i n ( 4 π n N ) C=\sum_{n=0}^{N-1}cos(\frac{4\pi n}{N}),S=\sum_{n=0}^{N-1}sin(\frac{4\pi n}{N}) ,则
C + j S = n = 0 N 1 e j 4 π n / N = 0 C+jS=\sum_{n=0}^{N-1}e^{j4\pi n/N}=0
这表示 C = 0 C=0 ,所以
n = 0 2 M 1 1 2 ( 1 + c o s ( 2 π n M ) ) = N 2 = M \sum_{n=0}^{2M-1}\frac{1}{2}(1+cos(\frac{2\pi n}{M}))=\frac{N}{2}=M
所以
r ~ [ l ] = 1 2 c o s ( π l M ) \tilde{r}[l]=\frac{1}{2}cos(\frac{\pi l}{M})
r ~ [ l ] \tilde{r}[l] 的周期为 2 M 2M
(b)
x ~ 2 [ n ] = { 0 , 1 , 2 , 3 , 4 , 5 } ,   0 n 5 \tilde{x}_2[n]=\{0,1,2,3,4,5\},\, 0 \leq n \leq 5
r ~ [ l ] = 1 6 n = 0 5 x ~ [ n ] x ~ [ n l ] \tilde{r}[l]=\frac{1}{6}\sum_{n=0}^{5}\tilde{x}[n]\tilde{x}[n-l]
所以
r ~ [ 0 ] = 1 6 ( x ~ [ 0 ] x ~ [ 0 ] + x ~ [ 1 ] x ~ [ 1 ] + x ~ [ 2 ] x ~ [ 2 ] + x ~ [ 3 ] x ~ [ 3 ] + x ~ [ 4 ] x ~ [ 4 ] + x ~ [ 5 ] x ~ [ 5 ] ) = 55 6 r ~ [ 1 ] = 1 6 ( x ~ [ 0 ] x ~ [ 5 1 ] + x ~ [ 1 ] x ~ [ 0 ] + x ~ [ 2 ] x ~ [ 1 ] + x ~ [ 3 ] x ~ [ 2 ] + x ~ [ 4 ] x ~ [ 3 ] + x ~ [ 5 ] x ~ [ 4 ] ) = 40 6 . . . \begin{aligned} \tilde{r}[0]&=\frac{1}{6}(\tilde{x}[0]\tilde{x}[0]+\tilde{x}[1]\tilde{x}[1]+\tilde{x}[2]\tilde{x}[2]+\tilde{x}[3]\tilde{x}[3]+\tilde{x}[4]\tilde{x}[4]+\tilde{x}[5]\tilde{x}[5])=\frac{55}{6}\\ \tilde{r}[1]&=\frac{1}{6}(\tilde{x}[0]\tilde{x}[5-1]+\tilde{x}[1]\tilde{x}[0]+\tilde{x}[2]\tilde{x}[1]+\tilde{x}[3]\tilde{x}[2]+\tilde{x}[4]\tilde{x}[3]+\tilde{x}[5]\tilde{x}[4])=\frac{40}{6}\\ ... \end{aligned}
(c)
x ~ 3 [ n ] = { 1 , 1 } , 0 n 1 \tilde{x}_3[n]=\{1,-1\}, 0\leq n \leq 1
r ~ [ l ] = 1 2 n = 0 1 x ~ [ n ] x ~ [ n l ] , 0 l 1 \tilde{r}[l]=\frac{1}{2}\sum_{n=0}^{1}\tilde{x}[n]\tilde{x}[n-l],\quad 0 \leq l \leq 1
r ~ [ 0 ] = 1 ,   r ~ [ 1 ] = 1 \tilde{r}[0]=1,\, \tilde{r}[1]=-1

猜你喜欢

转载自blog.csdn.net/The_last_knight/article/details/83899554