高等数学:8.2 数量积、向量积、混合积


一、两向量的数量积

  数量积:
a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ , a ⋅ a = ∣ a ∣ 2 \boldsymbol a \cdot \boldsymbol b=|\boldsymbol a||\boldsymbol b| \cos \theta, \quad \boldsymbol a \cdot \boldsymbol a=|\boldsymbol a|^2 ab=abcosθ,aa=a2

  交换律:
a ⋅ b = b ⋅ a \boldsymbol a \cdot \boldsymbol b=\boldsymbol b \cdot \boldsymbol a ab=ba

  分配律:
( a + b ) ⋅ c = a ⋅ c + b ⋅ c (\boldsymbol a + \boldsymbol b)\cdot \boldsymbol c=\boldsymbol a \cdot \boldsymbol c+ \boldsymbol b \cdot \boldsymbol c (a+b)c=ac+bc

  结合律:
( λ a ) ⋅ b = λ ( a ⋅ b ) (\lambda \boldsymbol a) \cdot \boldsymbol b=\lambda (\boldsymbol a \cdot \boldsymbol b) (λa)b=λ(ab)

  坐标表示:
a ⋅ b = ( a x b x + a y b y + a z b z ) \boldsymbol a \cdot \boldsymbol b=(a_xb_x+a_yb_y+a_zb_z) ab=(axbx+ayby+azbz)

  几何意义:两向量的数量积等于一个向量的模和另一向量在这向量的方向上的投影的乘积。
a ⋅ b = ∣ a ∣ P r j a b = ∣ b ∣ P r j b a \quad \boldsymbol a \cdot \boldsymbol b=|\boldsymbol a|Prj_a \boldsymbol b =|\boldsymbol b|Prj_b \boldsymbol a ab=aPrjab=bPrjba

  向量 a ⊥ b \boldsymbol a \bot \boldsymbol b ab的充分必要条件:
a ⋅ b = 0 \boldsymbol a \cdot \boldsymbol b=0 ab=0

二、两向量的向量积

  向量积:
a × b = c , a × a = 0 \boldsymbol a \times \boldsymbol b = \boldsymbol c, \quad \boldsymbol a \times \boldsymbol a=\boldsymbol 0 a×b=c,a×a=0

  反交换律:
a × b = − b × a \boldsymbol a \times \boldsymbol b=-\boldsymbol b \times \boldsymbol a a×b=b×a

  分配律:
( a + b ) × c = a × c + b × c ( \boldsymbol a + \boldsymbol b) \times \boldsymbol c=\boldsymbol a \times \boldsymbol c + \boldsymbol b \times\boldsymbol c (a+b)×c=a×c+b×c

  结合律:
( λ a ) × b = a × ( λ b ) = λ ( a × b ) (\lambda \boldsymbol a) \times \boldsymbol b =\boldsymbol a \times (\lambda \boldsymbol b) = \lambda (\boldsymbol a \times \boldsymbol b) (λa)×b=a×(λb)=λ(a×b)

扫描二维码关注公众号,回复: 12431834 查看本文章

  坐标表达式:
a × b = ( a y b z − a z b y ) i + ( a z b x − a x b z ) j + ( a x b y − a y b x ) k = ∣ i j k a x a y a z b x b y b z ∣ \boldsymbol a \times\boldsymbol b= (a_yb_z-a_zb_y)\boldsymbol i +(a_zb_x-a_xb_z)\boldsymbol j + (a_xb_y-a_yb_x)\boldsymbol k = \begin{vmatrix} i & j &k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} a×b=(aybzazby)i+(azbxaxbz)j+(axbyaybx)k=iaxbxjaybykazbz

  几何意义:向量积的模等于以这两个向量为边的平行四边形的面积。
∣ c ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ |\boldsymbol c|=|\boldsymbol a||\boldsymbol b| \sin \theta c=absinθ

  向量 a ∥ b \boldsymbol a \parallel \boldsymbol b ab的充分必要条件:
a × b = 0 \boldsymbol a \times \boldsymbol b=0 a×b=0

三、向量的混合积

  混合积:
[ a b c ] = ( a × b ) ⋅ c [\boldsymbol a \boldsymbol b \boldsymbol c]=(\boldsymbol a \times \boldsymbol b) \cdot \boldsymbol c [abc]=(a×b)c

  坐标表达式:
[ a b c ] = ∣ a x a y a z b x b y b z c x c y c z ∣ [\boldsymbol a \boldsymbol b \boldsymbol c] = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} [abc]=axbxcxaybycyazbzcz

  几何意义:混合积的绝对值等于以这三个向量为棱的平行六面体的体积。
∣ [ a b c ] ∣ = ∣ a × b ∣ ∣ c ∣ ∣ cos ⁡ α ∣ |[\boldsymbol a \boldsymbol b \boldsymbol c]| = | \boldsymbol a \times \boldsymbol b | | \boldsymbol c||\cos \alpha | [abc]=a×bccosα

  三向量 a 、 b 、 c \boldsymbol a、 \boldsymbol b、 \boldsymbol c abc共面的充分必要条件:
[ a b c ] = 0 [\boldsymbol a \boldsymbol b \boldsymbol c]=0 [abc]=0

猜你喜欢

转载自blog.csdn.net/qq_34801642/article/details/107098745